Jump to content

英文维基 | 中文维基 | 日文维基 | 草榴社区

Pseudopotential: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
m Alter: periodical, pages. Add: isbn, series, journal, pmid, pages, issue, volume. Removed parameters. Formatted dashes. | You can use this bot yourself. Report bugs here. | User-activated.
Correct the wrong "4\pi" coefficient in the formulat of Fermi pseudopotential to the correct "2\pi" coefficient.
 
(27 intermediate revisions by 16 users not shown)
Line 19: Line 19:


Approximations:
Approximations:
# One-electron picture.
# One-electron picture.{{Clarify|date=November 2022}}
# The small-core approximation assumes that there is no significant overlap between core and valence wave-function. Nonlinear core corrections<ref name="louie">{{Citation | title = Nonlinear ionic pseudopotentials in spin-density-functional calculations | last = Louie | first = Steven G. | last2 = Froyen | first2 = Sverre | last3 = Cohen | first3 = Marvin L. | journal = Physical Review B | volume = 26 | issue = 4 | pages = 1738–1742 |date=August 1982 | doi = 10.1103/PhysRevB.26.1738 |bibcode = 1982PhRvB..26.1738L }}</ref> or "semicore" electron inclusion<ref name="martins">{{Citation | title = First-principles norm-conserving pseudopotential with explicit incorporation of semicore states | last = Reis | first = Carlos L. | last2 = Pacheco | first2 = J. M. | last3 = Martins | first3 = José Luís | periodical = Physical Review B | volume = 68 | issue = 15 | pages = 155111 |date=October 2003 | doi = 10.1103/PhysRevB.68.155111 | publisher = American Physical Society|bibcode = 2003PhRvB..68o5111R }}</ref> deal with situations where overlap is non-negligible.
# The small-core approximation assumes that there is no significant overlap between core and valence wave-function. Nonlinear core corrections<ref name="louie">{{Citation | title = Nonlinear ionic pseudopotentials in spin-density-functional calculations | last1 = Louie | first1 = Steven G. | last2 = Froyen | first2 = Sverre | last3 = Cohen | first3 = Marvin L. | journal = Physical Review B | volume = 26 | issue = 4 | pages = 1738–1742 |date=August 1982 | doi = 10.1103/PhysRevB.26.1738 |bibcode = 1982PhRvB..26.1738L }}</ref> or "semicore" electron inclusion<ref name="martins">{{Citation | title = First-principles norm-conserving pseudopotential with explicit incorporation of semicore states | last1 = Reis | first1 = Carlos L. | last2 = Pacheco | first2 = J. M. | last3 = Martins | first3 = José Luís | periodical = Physical Review B | volume = 68 | issue = 15 | pages = 155111 |date=October 2003 | doi = 10.1103/PhysRevB.68.155111 | publisher = American Physical Society|bibcode = 2003PhRvB..68o5111R }}</ref> deal with situations where overlap is non-negligible.


Early applications of pseudopotentials to atoms and solids based on attempts to fit atomic spectra achieved only limited success. Solid-state pseudopotentials achieved their present popularity largely because of the successful fits by Walter Harrison to the nearly free electron Fermi surface of aluminum (1958) and by [[James Charles Phillips|James C. Phillips]] to the covalent energy gaps of silicon and germanium (1958). Phillips and coworkers (notably Marvin L. Cohen and coworkers) later extended this work to many other semiconductors, in what they called "semiempirical pseudopotentials".<ref>M. L. Cohen, J. R. Chelikowsky, "Electronic Structure and Optical Spectra of Semiconductors", (Springer Verlag, Berlin 1988)</ref>
Early applications of pseudopotentials to atoms and solids based on attempts to fit atomic spectra achieved only limited success. Solid-state pseudopotentials achieved their present popularity largely because of the successful fits by Walter Harrison to the nearly free electron Fermi surface of aluminum (1958) and by [[James Charles Phillips|James C. Phillips]] to the covalent energy gaps of silicon and germanium (1958). Phillips and coworkers (notably [[Marvin L. Cohen]] and coworkers) later extended this work to many other semiconductors, in what they called "semiempirical pseudopotentials".<ref>M. L. Cohen, J. R. Chelikowsky, "Electronic Structure and Optical Spectra of Semiconductors", (Springer Verlag, Berlin 1988)</ref>


=== Norm-conserving pseudopotential ===
=== Norm-conserving pseudopotential ===


''Norm-conserving'' and ''ultrasoft'' are the two most common forms of pseudopotential used in modern [[Basis set (chemistry)#Plane-wave basis sets|plane-wave]] [[Quantum chemistry computer programs|electronic structure codes]]. They allow a basis-set with a significantly lower cut-off (the frequency of the highest Fourier mode) to be used to describe the electron wavefunctions and so allow proper numerical convergence with reasonable computing resources. An alternative would be to augment the basis set around nuclei with atomic-like functions, as is done in [[Muffin-tin approximation|LAPW]]. Norm-conserving pseudopotential was first proposed by Hamann, Schlüter, and Chiang (HSC) in 1979.<ref>{{Cite journal|last=Hamann|first=D. R.|last2=Schlüter|first2=M.|last3=Chiang|first3=C.|date=1979-11-12|title=Norm-Conserving Pseudopotentials|journal=Physical Review Letters|volume=43|issue=20|pages=1494–1497|doi=10.1103/PhysRevLett.43.1494|bibcode=1979PhRvL..43.1494H}}</ref> The original HSC norm-conserving pseudopotential takes the following form:
''Norm-conserving'' and ''ultrasoft'' are the two most common forms of pseudopotential used in modern [[Basis set (chemistry)#Plane-wave basis sets|plane-wave]] [[Quantum chemistry computer programs|electronic structure codes]]. They allow a basis-set with a significantly lower cut-off (the frequency of the highest Fourier mode) to be used to describe the electron wavefunctions and so allow proper numerical convergence with reasonable computing resources. An alternative would be to augment the basis set around nuclei with atomic-like functions, as is done in [[Linearized augmented-plane-wave method|LAPW]]. Norm-conserving pseudopotential was first proposed by Hamann, Schlüter, and Chiang (HSC) in 1979.<ref>{{Cite journal|last1=Hamann|first1=D. R.|last2=Schlüter|first2=M.|last3=Chiang|first3=C.|date=1979-11-12|title=Norm-Conserving Pseudopotentials|journal=Physical Review Letters|volume=43|issue=20|pages=1494–1497|doi=10.1103/PhysRevLett.43.1494|bibcode=1979PhRvL..43.1494H}}</ref> The original HSC norm-conserving pseudopotential takes the following form:


<math>\hat{V}_{\textit{ps}}(r) = \sum_l \sum_m | Y_{lm} \rangle V_{lm}(r) \langle Y_{lm} |</math>
:<math>\hat{V}_{\textit{ps}}(r) = \sum_l \sum_m | Y_{lm} \rangle V_{lm}(r) \langle Y_{lm} |</math>


where <math>|Y_{lm}\rangle</math> projects a one-particle wavefunction, such as one Kohn-Sham orbital, to the angular momentum labeled by <math>\{l,m\}</math>. <math>V_{lm}(r)</math> is the pseudopotential that acts on the projected component. Different angular momentum states then feel different potentials, thus the HSC norm-conserving pseudopotential is non-local, in contrast to local pseudopotential which acts on all one-particle wave-functions in the same way.
where <math>|Y_{lm}\rangle</math> projects a one-particle wavefunction, such as one Kohn-Sham orbital, to the angular momentum labeled by <math>\{l,m\}</math>. <math>V_{lm}(r)</math> is the pseudopotential that acts on the projected component. Different angular momentum states then feel different potentials, thus the HSC norm-conserving pseudopotential is non-local, in contrast to local pseudopotential which acts on all one-particle wave-functions in the same way.
Line 34: Line 34:
Norm-conserving pseudopotentials are constructed to enforce two conditions.
Norm-conserving pseudopotentials are constructed to enforce two conditions.


1. Inside the cut-off radius <math>r_c</math>, the [[Normalizable wave function|norm]] of each pseudo-wavefunction be identical to its corresponding all-electron wavefunction:<ref name="bhs">{{Citation | title = Pseudopotentials that work: From H to Pu | last = Bachelet | first = G. B. | last2 = Hamann | first2 = D. R. | last3 = Schlüter | first3 = M. | periodical = Physical Review B | volume = 26 | issue = 8 | pages = 4199–4228 |date=October 1982 | doi = 10.1103/PhysRevB.26.4199 | publisher = American Physical Society|bibcode = 1982PhRvB..26.4199B }}</ref>
1. Inside the cut-off radius <math>r_c</math>, the [[Normalizable wave function|norm]] of each pseudo-wavefunction be identical to its corresponding all-electron wavefunction:<ref name="bhs">{{Citation | title = Pseudopotentials that work: From H to Pu | last1 = Bachelet | first1 = G. B. | last2 = Hamann | first2 = D. R. | last3 = Schlüter | first3 = M. | periodical = Physical Review B | volume = 26 | issue = 8 | pages = 4199–4228 |date=October 1982 | doi = 10.1103/PhysRevB.26.4199 | publisher = American Physical Society|bibcode = 1982PhRvB..26.4199B }}</ref>


:<math>\int_{r<r_c} dr^3 \phi_{\mathbf{R},i}(\vec r) \phi_{\mathbf{R},j} (\vec r) = \int_{r<r_c} dr^3 \tilde{\phi}_{\mathbf{R},i} (\vec r) \tilde{\phi}_{\mathbf{R},j} (\vec r)</math>,
:<math>\int_{r<r_c} dr^3 \phi_{\mathbf{R},i}(\vec r) \phi_{\mathbf{R},j} (\vec r) = \int_{r<r_c} dr^3 \tilde{\phi}_{\mathbf{R},i} (\vec r) \tilde{\phi}_{\mathbf{R},j} (\vec r)</math>,
:where <math>\phi_{\mathbf{R},i}</math> and <math>\tilde{\phi}_{\mathbf{R},i}</math> are the all-electron and pseudo reference states for the pseudopotential on atom <math>\mathbf{R}</math>.
:where <math>\phi_{\mathbf{R},i}</math> and <math>\tilde{\phi}_{\mathbf{R},i}</math> are the all-electron and pseudo reference states for the pseudopotential on atom <math>\mathbf{R}</math>.
2. All-electron and pseudo wavefunctions are identical outside cut-off radius <math>r_c</math>.
2. All-electron and pseudo wavefunctions are identical outside cut-off radius <math>r_c</math>.

[[File:Pseudopotential.png|thumb|Pseudopotential representing the effective core charge.]]


=== Ultrasoft pseudopotentials ===
=== Ultrasoft pseudopotentials ===
Ultrasoft pseudopotentials relax the norm-conserving constraint to reduce the necessary basis-set size further at the expense of introducing a generalized eigenvalue problem.<ref name="vanderbilt">{{Citation | title = Soft self-consistent pseudopotentials in a generalized eigenvalue formalism | last = Vanderbilt | first = David | periodical = Physical Review B | volume = 41 | issue = 11 | pages = 7892–7895 |date=April 1990 | doi = 10.1103/PhysRevB.41.7892 | publisher = American Physical Society|bibcode = 1990PhRvB..41.7892V }}</ref> With a non-zero difference in norms we can now define:
Ultrasoft pseudopotentials relax the norm-conserving constraint to reduce the necessary basis-set size further at the expense of introducing a generalized eigenvalue problem.<ref name="vanderbilt">{{Citation | title = Soft self-consistent pseudopotentials in a generalized eigenvalue formalism | last = Vanderbilt | first = David | periodical = Physical Review B | volume = 41 | issue = 11 | pages = 7892–7895 |date=April 1990 | doi = 10.1103/PhysRevB.41.7892 | publisher = American Physical Society| pmid = 9993096 |bibcode = 1990PhRvB..41.7892V }}</ref> With a non-zero difference in norms we can now define:


:<math>q_{\mathbf{R},ij} = \langle \phi_{\mathbf{R},i} | \phi_{\mathbf{R},j} \rangle - \langle \tilde{\phi}_{\mathbf{R},i} | \tilde{\phi}_{\mathbf{R},j} \rangle</math>,
:<math>q_{\mathbf{R},ij} = \langle \phi_{\mathbf{R},i} | \phi_{\mathbf{R},j} \rangle - \langle \tilde{\phi}_{\mathbf{R},i} | \tilde{\phi}_{\mathbf{R},j} \rangle</math>,
Line 63: Line 65:
[[Enrico Fermi]] introduced a pseudopotential, <math>V</math>, to describe the scattering of a free neutron by a nucleus.<ref>{{Citation|author=E. Fermi|journal=Ricerca Scientifica|volume=7|pages=13–52|date=July 1936|title=Motion of neutrons in hydrogenous substances}}</ref> The scattering is assumed to be [[partial wave analysis|''s''-wave]] scattering, and therefore spherically symmetric. Therefore, the potential is given as a function of radius, <math>r</math>:
[[Enrico Fermi]] introduced a pseudopotential, <math>V</math>, to describe the scattering of a free neutron by a nucleus.<ref>{{Citation|author=E. Fermi|journal=Ricerca Scientifica|volume=7|pages=13–52|date=July 1936|title=Motion of neutrons in hydrogenous substances}}</ref> The scattering is assumed to be [[partial wave analysis|''s''-wave]] scattering, and therefore spherically symmetric. Therefore, the potential is given as a function of radius, <math>r</math>:


<math>V(r)=\frac{4\pi\hbar^2}{m}b\,\delta(r)</math>,
:<math>V(r)=\frac{2\pi\hbar^2}{m}b\,\delta(r)</math>,


where <math>\hbar</math> is the [[Planck constant]] divided by <math> 2\pi</math>, <math>m</math> is the [[mass]], <math>\delta(r)</math> is the [[Dirac delta function]], <math>b</math> is the bound coherent neutron [[scattering length]], and <math>r=0</math> the [[center of mass]] of the [[atomic nucleus|nucleus]].<ref>Squires, ''Introduction to the Theory of Thermal Neutron Scattering'', Dover Publications (1996) {{ISBN|0-486-69447-X}}</ref> The Fourier transform of this <math>\delta</math>-function leads to the constant [[Atomic form factor#Neutron form factor|neutron form factor]].
where <math>\hbar</math> is the [[Planck constant]] divided by <math> 2\pi</math>, <math>m</math> is the [[mass]], <math>\delta(r)</math> is the [[Dirac delta function]], <math>b</math> is the bound coherent neutron [[scattering length]], and <math>r=0</math> the [[center of mass]] of the [[atomic nucleus|nucleus]].<ref>Squires, ''Introduction to the Theory of Thermal Neutron Scattering'', Dover Publications (1996) {{ISBN|0-486-69447-X}}</ref> The Fourier transform of this <math>\delta</math>-function leads to the constant [[Atomic form factor#Neutron form factor|neutron form factor]].


==Phillips pseudopotential==
==Phillips pseudopotential==
[[James Charles Phillips]] developed a simplified pseudopotential while at [[Bell Labs]] useful for describing silicon and germanium.
[[James Charles Phillips]] developed a simplified pseudopotential while at [[Bell Labs]] useful for describing silicon and germanium.<ref>{{Citation|author=J. C. Phillips|journal=Physical Review|volume=112|pages=685–695|date=November 1958|title=Energy-Band Interpolation Scheme Based on a Pseudopotential|issue=3 |doi=10.1103/PhysRev.112.685|bibcode=1958PhRv..112..685P }}</ref>


==See also==
==See also==
* [[Density functional theory]]
* [[Density functional theory]]
* [[Projector augmented wave method]]
* [[Projector augmented wave method]]
* [[Marvin L. Cohen]]
* [[Alex Zunger]]


== References ==
== References ==
Line 86: Line 90:


== Further reading ==
== Further reading ==
* {{Citation | last = Hellmann | first = Hans | authorlink = Hans Hellmann | year = 1935 | title = A New Approximation Method in the Problem of Many Electrons | periodical = Journal of Chemical Physics | place = Karpow‐Institute for Physical Chemistry, Moscow | volume = 3 | issue = 1 | page = 61 | url = http://jcp.aip.org/resource/1/jcpsa6/v3/i1/p61_s1 | archive-url = https://archive.is/20130223111650/http://jcp.aip.org/resource/1/jcpsa6/v3/i1/p61_s1 | dead-url = yes | archive-date = 2013-02-23 | issn = 0021-9606 | doi = 10.1063/1.1749559 | bibcode = 1935JChPh...3...61H }}
* {{Citation | last = Hellmann | first = Hans | authorlink = Hans Hellmann | year = 1935 | title = A New Approximation Method in the Problem of Many Electrons | periodical = Journal of Chemical Physics | place = Karpow-Institute for Physical Chemistry, Moscow | volume = 3 | issue = 1 | page = 61 | url = http://jcp.aip.org/resource/1/jcpsa6/v3/i1/p61_s1 | archive-url = https://archive.today/20130223111650/http://jcp.aip.org/resource/1/jcpsa6/v3/i1/p61_s1 | url-status = dead | archive-date = 2013-02-23 | issn = 0021-9606 | doi = 10.1063/1.1749559 | bibcode = 1935JChPh...3...61H }}
* {{Citation | last = Hellmann | first = H. | last2 = Kassatotschkin | first2 = W. | year = 1936 | title = Metallic Binding According to the Combined Approximation Procedure | periodical = Journal of Chemical Physics | place = Karpow‐Institute for Physical Chemistry, Moscow | volume = 4 | issue = 5 | page = 324 | url = http://jcp.aip.org/resource/1/jcpsa6/v4/i5/p324_s2 | archive-url = https://archive.is/20130223083105/http://jcp.aip.org/resource/1/jcpsa6/v4/i5/p324_s2 | dead-url = yes | archive-date = 2013-02-23 | issn = 0021-9606 | doi = 10.1063/1.1749851 | bibcode = 1936JChPh...4..324H }}
* {{Citation | last1 = Hellmann | first1 = H. | last2 = Kassatotschkin | first2 = W. | year = 1936 | title = Metallic Binding According to the Combined Approximation Procedure | periodical = Journal of Chemical Physics | place = Karpow-Institute for Physical Chemistry, Moscow | volume = 4 | issue = 5 | page = 324 | url = http://jcp.aip.org/resource/1/jcpsa6/v4/i5/p324_s2 | archive-url = https://archive.today/20130223083105/http://jcp.aip.org/resource/1/jcpsa6/v4/i5/p324_s2 | url-status = dead | archive-date = 2013-02-23 | issn = 0021-9606 | doi = 10.1063/1.1749851 | bibcode = 1936JChPh...4..324H }}
* {{Citation | last = Harrison | first = Walter Ashley | year = 1966 | title = Pseudopotentials in the theory of metals | series = Frontiers in Physics | issue = 25 | publisher = University of Virginia}}
* {{Citation | last = Harrison | first = Walter Ashley | year = 1966 | title = Pseudopotentials in the theory of metals | series = Frontiers in Physics | issue = 25 | publisher = University of Virginia}}
* {{Citation | last = Brust | first = David | title = The Pseudopotential Method and the Single-Particle Electronic Excitation Spectra of Crystals | editor-last = Alder | editor-first = Berni | periodical = Methods in Computational Physics | volume = 8 | publisher = Academic Press | place = New York | year = 1968 | pages = 33–61 | issn = 0076-6860}}
* {{Citation | last = Brust | first = David | title = The Pseudopotential Method and the Single-Particle Electronic Excitation Spectra of Crystals | editor-last = Alder | editor-first = Berni | periodical = Methods in Computational Physics | volume = 8 | publisher = Academic Press | place = New York | year = 1968 | pages = 33–61 | issn = 0076-6860}}
* {{Citation | last = Heine | first = Volker | authorlink = Volker Heine | year = 1970 | periodical = Solid State Physics | volume = 24 | pages = 1–36 | title = The Pseudopotential Concept | doi = 10.1016/S0081-1947(08)60069-7 | publisher = Academic Press| series = Solid State Physics | isbn = 9780126077247 }}
* {{Citation | last = Heine | first = Volker | authorlink = Volker Heine | year = 1970 | periodical = Solid State Physics | volume = 24 | pages = 1–36 | title = The Pseudopotential Concept | doi = 10.1016/S0081-1947(08)60069-7 | publisher = Academic Press| series = Solid State Physics | isbn = 9780126077247 }}
* {{Citation | last = Pickett | first = Warren E. |date=April 1989 | title = Pseudopotential methods in condensed matter applications | periodical = Computer Physics Reports | volume = 9 | issue = 3 | pages = 115–197 | doi = 10.1016/0167-7977(89)90002-6|bibcode = 1989CoPhR...9..115P }}
* {{Citation | last = Pickett | first = Warren E. |date=April 1989 | title = Pseudopotential methods in condensed matter applications | periodical = Computer Physics Reports | volume = 9 | issue = 3 | pages = 115–197 | doi = 10.1016/0167-7977(89)90002-6|bibcode = 1989CoPhR...9..115P }}
* {{Citation | last = Hamann | first = D. R. | year = 2013 | title = Optimized norm-conserving Vanderbilt pseudopotentials | periodical = Physical Review B | volume = 88 | issue = 8 | pages = 085117 | doi = 10.1103/PhysRevB.88.085117 | arxiv = 1306.4707 | bibcode = 2013PhRvB..88h5117H }}
* {{Citation | last = Hamann | first = D. R. | year = 2013 | title = Optimized norm-conserving Vanderbilt pseudopotentials | periodical = Physical Review B | volume = 88 | issue = 8 | pages = 085117 | doi = 10.1103/PhysRevB.88.085117 | arxiv = 1306.4707 | bibcode = 2013PhRvB..88h5117H | s2cid = 119232272 }}
* {{Citation | last1=Lejaeghere|first1=K.|last2=Bihlmayer|first2=G.|last3=Bjorkman|first3=T.|last4=Blaha|first4=P.|last5=Blugel|first5=S.|last6=Blum|first6=V.|last7=Caliste|first7=D.|last8=Castelli|first8=I. E.|last9=Clark|first9=S. J.|last10=Dal Corso|first10=A.|last11=de Gironcoli|first11=S.|last12=Deutsch|first12=T.|last13=Dewhurst|first13=J. K.|last14=Di Marco|first14=I.|last15=Draxl|first15=C.|last16=Du ak|first16=M.|last17=Eriksson|first17=O.|last18=Flores-Livas|first18=J. A.|last19=Garrity|first19=K. F.|last20=Genovese|first20=L.|last21=Giannozzi|first21=P.|last22=Giantomassi|first22=M.|last23=Goedecker|first23=S.|last24=Gonze|first24=X.|last25=Granas|first25=O.|last26=Gross|first26=E. K. U.|last27=Gulans|first27=A.|last28=Gygi|first28=F.|last29=Hamann|first29=D. R.|last30=Hasnip|first30=P. J.|last31=Holzwarth|first31=N. A. W.|last32=Iu an|first32=D.|last33=Jochym|first33=D. B.|last34=Jollet|first34=F.|last35=Jones|first35=D.|last36=Kresse|first36=G.|last37=Koepernik|first37=K.|last38=Kucukbenli|first38=E.|last39=Kvashnin|first39=Y. O.|last40=Locht|first40=I. L. M.|last41=Lubeck|first41=S.|last42=Marsman|first42=M.|last43=Marzari|first43=N.|last44=Nitzsche|first44=U.|last45=Nordstrom|first45=L.|last46=Ozaki|first46=T.|last47=Paulatto|first47=L.|last48=Pickard|first48=C. J.|last49=Poelmans|first49=W.|last50=Probert|first50=M. I. J.|last51=Refson|first51=K.|last52=Richter|first52=M.|last53=Rignanese|first53=G.-M.|last54=Saha|first54=S.|last55=Scheffler|first55=M.|last56=Schlipf|first56=M.|last57=Schwarz|first57=K.|last58=Sharma|first58=S.|last59=Tavazza|first59=F.|last60=Thunstrom|first60=P.|last61=Tkatchenko|first61=A.|last62=Torrent|first62=M.|last63=Vanderbilt|first63=D.|last64=van Setten|first64=M. J.|last65=Van Speybroeck|first65=V.|last66=Wills|first66=J. M.|last67=Yates|first67=J. R.|last68=Zhang|first68=G.-X.|last69=Cottenier|first69=S.|title=Reproducibility in density functional theory calculations of solids|url=http://science.sciencemag.org/content/sci/351/6280/aad3000.full.pdf|journal=Science|volume=351|issue=6280|year=2016|pages=aad3000|issn=0036-8075|doi=10.1126/science.aad3000|pmid=27013736|bibcode=2016Sci...351.....L}}
* {{Citation | last1=Lejaeghere|first1=K.|last2=Bihlmayer|first2=G.|last3=Bjorkman|first3=T.|last4=Blaha|first4=P.|last5=Blugel|first5=S.|last6=Blum|first6=V.|last7=Caliste|first7=D.|last8=Castelli|first8=I. E.|last9=Clark|first9=S. J.|last10=Dal Corso|first10=A.|last11=de Gironcoli|first11=S.|last12=Deutsch|first12=T.|last13=Dewhurst|first13=J. K.|last14=Di Marco|first14=I.|last15=Draxl|first15=C.|last16=Du ak|first16=M.|last17=Eriksson|first17=O.|last18=Flores-Livas|first18=J. A.|last19=Garrity|first19=K. F.|last20=Genovese|first20=L.|last21=Giannozzi|first21=P.|last22=Giantomassi|first22=M.|last23=Goedecker|first23=S.|last24=Gonze|first24=X.|last25=Granas|first25=O.|last26=Gross|first26=E. K. U.|last27=Gulans|first27=A.|last28=Gygi|first28=F.|last29=Hamann|first29=D. R.|last30=Hasnip|first30=P. J.|last31=Holzwarth|first31=N. A. W.|last32=Iu an|first32=D.|last33=Jochym|first33=D. B.|last34=Jollet|first34=F.|last35=Jones|first35=D.|last36=Kresse|first36=G.|last37=Koepernik|first37=K.|last38=Kucukbenli|first38=E.|last39=Kvashnin|first39=Y. O.|last40=Locht|first40=I. L. M.|last41=Lubeck|first41=S.|last42=Marsman|first42=M.|last43=Marzari|first43=N.|last44=Nitzsche|first44=U.|last45=Nordstrom|first45=L.|last46=Ozaki|first46=T.|last47=Paulatto|first47=L.|last48=Pickard|first48=C. J.|last49=Poelmans|first49=W.|last50=Probert|first50=M. I. J.|last51=Refson|first51=K.|last52=Richter|first52=M.|last53=Rignanese|first53=G.-M.|last54=Saha|first54=S.|last55=Scheffler|first55=M.|last56=Schlipf|first56=M.|last57=Schwarz|first57=K.|last58=Sharma|first58=S.|last59=Tavazza|first59=F.|last60=Thunstrom|first60=P.|last61=Tkatchenko|first61=A.|last62=Torrent|first62=M.|last63=Vanderbilt|first63=D.|last64=van Setten|first64=M. J.|last65=Van Speybroeck|first65=V.|last66=Wills|first66=J. M.|last67=Yates|first67=J. R.|last68=Zhang|first68=G.-X.|last69=Cottenier|first69=S.|title=Reproducibility in density functional theory calculations of solids|journal=Science|volume=351|issue=6280|year=2016|pages=aad3000|issn=0036-8075|doi=10.1126/science.aad3000|pmid=27013736|bibcode=2016Sci...351.....L|doi-access=free|hdl=1854/LU-7191263|hdl-access=free}}
* {{cite journal |last1=Bosoni |first1=Emanuele |last2=Beal |first2=Louis |last3=Bercx |first3=Marnik |last4=Blaha |first4=Peter |last5=Blügel |first5=Stefan |last6=Bröder |first6=Jens |last7=Callsen |first7=Martin |last8=Cottenier |first8=Stefaan |last9=Degomme |first9=Augustin |last10=Dikan |first10=Vladimir |last11=Eimre |first11=Kristjan |last12=Flage-Larsen |first12=Espen |last13=Fornari |first13=Marco |last14=Garcia |first14=Alberto |last15=Genovese |first15=Luigi |last16=Giantomassi |first16=Matteo |last17=Huber |first17=Sebastiaan P. |last18=Janssen |first18=Henning |last19=Kastlunger |first19=Georg |last20=Krack |first20=Matthias |last21=Kresse |first21=Georg |last22=Kühne |first22=Thomas D. |last23=Lejaeghere |first23=Kurt |last24=Madsen |first24=Georg K. H. |last25=Marsman |first25=Martijn |last26=Marzari |first26=Nicola |last27=Michalicek |first27=Gregor |last28=Mirhosseini |first28=Hossein |last29=Müller |first29=Tiziano M. A. |last30=Petretto |first30=Guido |last31=Pickard |first31=Chris J. |last32=Poncé |first32=Samuel |last33=Rignanese |first33=Gian-Marco |last34=Rubel |first34=Oleg |last35=Ruh |first35=Thomas |last36=Sluydts |first36=Michael |last37=Vanpoucke |first37=Danny E. P. |last38=Vijay |first38=Sudarshan |last39=Wolloch |first39=Michael |last40=Wortmann |first40=Daniel |last41=Yakutovich |first41=Aliaksandr V. |last42=Yu |first42=Jusong |last43=Zadoks |first43=Austin |last44=Zhu |first44=Bonan |last45=Pizzi |first45=Giovanni |title=How to verify the precision of density-functional-theory implementations via reproducible and universal workflows |journal=Nature Reviews Physics |date=January 2024 |volume=6 |issue=1 |pages=45–58 |doi=10.1038/s42254-023-00655-3|arxiv=2305.17274 |bibcode=2024NatRP...6...45B }}



[[Category:Computational physics]]
[[Category:Computational physics]]
[[Category:Electronic structure methods]]
[[Category:Electronic structure methods]]
[[Category:Quantum mechanical potentials]]

Latest revision as of 10:27, 26 August 2024

Comparison of a wavefunction in the Coulomb potential of the nucleus (blue) to the one in the pseudopotential (red). The real and the pseudo wavefunction and potentials match above a certain cutoff radius .

In physics, a pseudopotential or effective potential is used as an approximation for the simplified description of complex systems. Applications include atomic physics and neutron scattering. The pseudopotential approximation was first introduced by Hans Hellmann in 1934.[1]

Atomic physics

[edit]

The pseudopotential is an attempt to replace the complicated effects of the motion of the core (i.e. non-valence) electrons of an atom and its nucleus with an effective potential, or pseudopotential, so that the Schrödinger equation contains a modified effective potential term instead of the Coulombic potential term for core electrons normally found in the Schrödinger equation.

The pseudopotential is an effective potential constructed to replace the atomic all-electron potential (full-potential) such that core states are eliminated and the valence electrons are described by pseudo-wavefunctions with significantly fewer nodes. This allows the pseudo-wavefunctions to be described with far fewer Fourier modes, thus making plane-wave basis sets practical to use. In this approach usually only the chemically active valence electrons are dealt with explicitly, while the core electrons are 'frozen', being considered together with the nuclei as rigid non-polarizable ion cores. It is possible to self-consistently update the pseudopotential with the chemical environment that it is embedded in, having the effect of relaxing the frozen core approximation, although this is rarely done. In codes using local basis functions, like Gaussian, often effective core potentials are used that only freeze the core electrons.

First-principles pseudopotentials are derived from an atomic reference state, requiring that the pseudo- and all-electron valence eigenstates have the same energies and amplitude (and thus density) outside a chosen core cut-off radius .

Pseudopotentials with larger cut-off radius are said to be softer, that is more rapidly convergent, but at the same time less transferable, that is less accurate to reproduce realistic features in different environments.

Motivation:

  1. Reduction of basis set size
  2. Reduction of number of electrons
  3. Inclusion of relativistic and other effects

Approximations:

  1. One-electron picture.[clarification needed]
  2. The small-core approximation assumes that there is no significant overlap between core and valence wave-function. Nonlinear core corrections[2] or "semicore" electron inclusion[3] deal with situations where overlap is non-negligible.

Early applications of pseudopotentials to atoms and solids based on attempts to fit atomic spectra achieved only limited success. Solid-state pseudopotentials achieved their present popularity largely because of the successful fits by Walter Harrison to the nearly free electron Fermi surface of aluminum (1958) and by James C. Phillips to the covalent energy gaps of silicon and germanium (1958). Phillips and coworkers (notably Marvin L. Cohen and coworkers) later extended this work to many other semiconductors, in what they called "semiempirical pseudopotentials".[4]

Norm-conserving pseudopotential

[edit]

Norm-conserving and ultrasoft are the two most common forms of pseudopotential used in modern plane-wave electronic structure codes. They allow a basis-set with a significantly lower cut-off (the frequency of the highest Fourier mode) to be used to describe the electron wavefunctions and so allow proper numerical convergence with reasonable computing resources. An alternative would be to augment the basis set around nuclei with atomic-like functions, as is done in LAPW. Norm-conserving pseudopotential was first proposed by Hamann, Schlüter, and Chiang (HSC) in 1979.[5] The original HSC norm-conserving pseudopotential takes the following form:

where projects a one-particle wavefunction, such as one Kohn-Sham orbital, to the angular momentum labeled by . is the pseudopotential that acts on the projected component. Different angular momentum states then feel different potentials, thus the HSC norm-conserving pseudopotential is non-local, in contrast to local pseudopotential which acts on all one-particle wave-functions in the same way.

Norm-conserving pseudopotentials are constructed to enforce two conditions.

1. Inside the cut-off radius , the norm of each pseudo-wavefunction be identical to its corresponding all-electron wavefunction:[6]

,
where and are the all-electron and pseudo reference states for the pseudopotential on atom .

2. All-electron and pseudo wavefunctions are identical outside cut-off radius .

Pseudopotential representing the effective core charge.

Ultrasoft pseudopotentials

[edit]

Ultrasoft pseudopotentials relax the norm-conserving constraint to reduce the necessary basis-set size further at the expense of introducing a generalized eigenvalue problem.[7] With a non-zero difference in norms we can now define:

,

and so a normalised eigenstate of the pseudo Hamiltonian now obeys the generalized equation

,

where the operator is defined as

,

where are projectors that form a dual basis with the pseudo reference states inside the cut-off radius, and are zero outside:

.

A related technique[8] is the projector augmented wave (PAW) method.

Fermi pseudopotential

[edit]

Enrico Fermi introduced a pseudopotential, , to describe the scattering of a free neutron by a nucleus.[9] The scattering is assumed to be s-wave scattering, and therefore spherically symmetric. Therefore, the potential is given as a function of radius, :

,

where is the Planck constant divided by , is the mass, is the Dirac delta function, is the bound coherent neutron scattering length, and the center of mass of the nucleus.[10] The Fourier transform of this -function leads to the constant neutron form factor.

Phillips pseudopotential

[edit]

James Charles Phillips developed a simplified pseudopotential while at Bell Labs useful for describing silicon and germanium.[11]

See also

[edit]

References

[edit]
  1. ^ Schwerdtfeger, P. (August 2011), "The Pseudopotential Approximation in Electronic Structure Theory", ChemPhysChem, 12 (17): 3143–3155, doi:10.1002/cphc.201100387, PMID 21809427
  2. ^ Louie, Steven G.; Froyen, Sverre; Cohen, Marvin L. (August 1982), "Nonlinear ionic pseudopotentials in spin-density-functional calculations", Physical Review B, 26 (4): 1738–1742, Bibcode:1982PhRvB..26.1738L, doi:10.1103/PhysRevB.26.1738
  3. ^ Reis, Carlos L.; Pacheco, J. M.; Martins, José Luís (October 2003), "First-principles norm-conserving pseudopotential with explicit incorporation of semicore states", Physical Review B, vol. 68, no. 15, American Physical Society, p. 155111, Bibcode:2003PhRvB..68o5111R, doi:10.1103/PhysRevB.68.155111
  4. ^ M. L. Cohen, J. R. Chelikowsky, "Electronic Structure and Optical Spectra of Semiconductors", (Springer Verlag, Berlin 1988)
  5. ^ Hamann, D. R.; Schlüter, M.; Chiang, C. (1979-11-12). "Norm-Conserving Pseudopotentials". Physical Review Letters. 43 (20): 1494–1497. Bibcode:1979PhRvL..43.1494H. doi:10.1103/PhysRevLett.43.1494.
  6. ^ Bachelet, G. B.; Hamann, D. R.; Schlüter, M. (October 1982), "Pseudopotentials that work: From H to Pu", Physical Review B, vol. 26, no. 8, American Physical Society, pp. 4199–4228, Bibcode:1982PhRvB..26.4199B, doi:10.1103/PhysRevB.26.4199
  7. ^ Vanderbilt, David (April 1990), "Soft self-consistent pseudopotentials in a generalized eigenvalue formalism", Physical Review B, vol. 41, no. 11, American Physical Society, pp. 7892–7895, Bibcode:1990PhRvB..41.7892V, doi:10.1103/PhysRevB.41.7892, PMID 9993096
  8. ^ Kresse, G.; Joubert, D. (1999). "From ultrasoft pseudopotentials to the projector augmented-wave method". Physical Review B. 59 (3): 1758–1775. Bibcode:1999PhRvB..59.1758K. doi:10.1103/PhysRevB.59.1758.
  9. ^ E. Fermi (July 1936), "Motion of neutrons in hydrogenous substances", Ricerca Scientifica, 7: 13–52
  10. ^ Squires, Introduction to the Theory of Thermal Neutron Scattering, Dover Publications (1996) ISBN 0-486-69447-X
  11. ^ J. C. Phillips (November 1958), "Energy-Band Interpolation Scheme Based on a Pseudopotential", Physical Review, 112 (3): 685–695, Bibcode:1958PhRv..112..685P, doi:10.1103/PhysRev.112.685

Pseudopotential libraries

[edit]
  • Pseudopotential Library : A community website for pseudopotentials/effective core potentials developed for high accuracy correlated many-body methods such as quantum Monte Carlo and quantum chemistry
  • NNIN Virtual Vault for Pseudopotentials : This webpage maintained by the NNIN/C provides a searchable database of pseudopotentials for density functional codes as well as links to pseudopotential generators, converters, and other online databases.
  • Vanderbilt Ultra-Soft Pseudopotential Site : Website of David Vanderbilt with links to codes that implement ultrasoft pseudopotentials and libraries of generated pseudopotentials.
  • GBRV pseudopotential site : This site hosts the GBRV pseudopotential library
  • PseudoDojo : This site collates tested pseudo potentials sorted by type, accuracy, and efficiency, shows information on convergence of various tested properties and provides download options.
  • SSSP : Standard Solid State Pseudopotentials

Further reading

[edit]
  • Hellmann, Hans (1935), "A New Approximation Method in the Problem of Many Electrons", Journal of Chemical Physics, vol. 3, no. 1, Karpow-Institute for Physical Chemistry, Moscow, p. 61, Bibcode:1935JChPh...3...61H, doi:10.1063/1.1749559, ISSN 0021-9606, archived from the original on 2013-02-23
  • Hellmann, H.; Kassatotschkin, W. (1936), "Metallic Binding According to the Combined Approximation Procedure", Journal of Chemical Physics, vol. 4, no. 5, Karpow-Institute for Physical Chemistry, Moscow, p. 324, Bibcode:1936JChPh...4..324H, doi:10.1063/1.1749851, ISSN 0021-9606, archived from the original on 2013-02-23
  • Harrison, Walter Ashley (1966), Pseudopotentials in the theory of metals, Frontiers in Physics, University of Virginia
  • Brust, David (1968), Alder, Berni (ed.), "The Pseudopotential Method and the Single-Particle Electronic Excitation Spectra of Crystals", Methods in Computational Physics, vol. 8, New York: Academic Press, pp. 33–61, ISSN 0076-6860
  • Heine, Volker (1970), "The Pseudopotential Concept", Solid State Physics, Solid State Physics, vol. 24, Academic Press, pp. 1–36, doi:10.1016/S0081-1947(08)60069-7, ISBN 9780126077247
  • Pickett, Warren E. (April 1989), "Pseudopotential methods in condensed matter applications", Computer Physics Reports, vol. 9, no. 3, pp. 115–197, Bibcode:1989CoPhR...9..115P, doi:10.1016/0167-7977(89)90002-6
  • Hamann, D. R. (2013), "Optimized norm-conserving Vanderbilt pseudopotentials", Physical Review B, vol. 88, no. 8, p. 085117, arXiv:1306.4707, Bibcode:2013PhRvB..88h5117H, doi:10.1103/PhysRevB.88.085117, S2CID 119232272
  • Lejaeghere, K.; Bihlmayer, G.; Bjorkman, T.; Blaha, P.; Blugel, S.; Blum, V.; Caliste, D.; Castelli, I. E.; Clark, S. J.; Dal Corso, A.; de Gironcoli, S.; Deutsch, T.; Dewhurst, J. K.; Di Marco, I.; Draxl, C.; Du ak, M.; Eriksson, O.; Flores-Livas, J. A.; Garrity, K. F.; Genovese, L.; Giannozzi, P.; Giantomassi, M.; Goedecker, S.; Gonze, X.; Granas, O.; Gross, E. K. U.; Gulans, A.; Gygi, F.; Hamann, D. R.; Hasnip, P. J.; Holzwarth, N. A. W.; Iu an, D.; Jochym, D. B.; Jollet, F.; Jones, D.; Kresse, G.; Koepernik, K.; Kucukbenli, E.; Kvashnin, Y. O.; Locht, I. L. M.; Lubeck, S.; Marsman, M.; Marzari, N.; Nitzsche, U.; Nordstrom, L.; Ozaki, T.; Paulatto, L.; Pickard, C. J.; Poelmans, W.; Probert, M. I. J.; Refson, K.; Richter, M.; Rignanese, G.-M.; Saha, S.; Scheffler, M.; Schlipf, M.; Schwarz, K.; Sharma, S.; Tavazza, F.; Thunstrom, P.; Tkatchenko, A.; Torrent, M.; Vanderbilt, D.; van Setten, M. J.; Van Speybroeck, V.; Wills, J. M.; Yates, J. R.; Zhang, G.-X.; Cottenier, S. (2016), "Reproducibility in density functional theory calculations of solids", Science, 351 (6280): aad3000, Bibcode:2016Sci...351.....L, doi:10.1126/science.aad3000, hdl:1854/LU-7191263, ISSN 0036-8075, PMID 27013736
  • Bosoni, Emanuele; Beal, Louis; Bercx, Marnik; Blaha, Peter; Blügel, Stefan; Bröder, Jens; Callsen, Martin; Cottenier, Stefaan; Degomme, Augustin; Dikan, Vladimir; Eimre, Kristjan; Flage-Larsen, Espen; Fornari, Marco; Garcia, Alberto; Genovese, Luigi; Giantomassi, Matteo; Huber, Sebastiaan P.; Janssen, Henning; Kastlunger, Georg; Krack, Matthias; Kresse, Georg; Kühne, Thomas D.; Lejaeghere, Kurt; Madsen, Georg K. H.; Marsman, Martijn; Marzari, Nicola; Michalicek, Gregor; Mirhosseini, Hossein; Müller, Tiziano M. A.; Petretto, Guido; Pickard, Chris J.; Poncé, Samuel; Rignanese, Gian-Marco; Rubel, Oleg; Ruh, Thomas; Sluydts, Michael; Vanpoucke, Danny E. P.; Vijay, Sudarshan; Wolloch, Michael; Wortmann, Daniel; Yakutovich, Aliaksandr V.; Yu, Jusong; Zadoks, Austin; Zhu, Bonan; Pizzi, Giovanni (January 2024). "How to verify the precision of density-functional-theory implementations via reproducible and universal workflows". Nature Reviews Physics. 6 (1): 45–58. arXiv:2305.17274. Bibcode:2024NatRP...6...45B. doi:10.1038/s42254-023-00655-3.