Jump to content

英文维基 | 中文维基 | 日文维基 | 草榴社区

Viridiplantae

From Wikipedia, the free encyclopedia
(Redirected from Chlorobionta)

Viridiplantae
An assortment of thallophyte Viridiplantae in a rock pool, Taiwan
Scientific classification Edit this classification
Domain: Eukaryota
Clade: Diaphoretickes
Clade: CAM
Clade: Archaeplastida
Clade: Viridiplantae
Cavalier-Smith, 1981
Subgroups
Synonyms
  • Plantae, Copeland, 1938, 1956[2][3]
  • Euchlorophyta Whittaker, 1969[4]
  • Chlorophyta sensu van den Hoek & Jahns, 1978[5]
  • Chlorobionta Jeffrey 1982, emend. Bremer 1985, emend. Lewis and McCourt 2004
  • Chlorobiota Kendrick and Crane 1997
  • Chloroplastida Adl et al., 2005
  • Viridiplantae Cavalier-Smith 1981[6]
  • Phyta Barkley 1939 emed. Holt & Uidica 2007
  • Cormophyta Endlicher, 1836
  • Cormobionta Rothmaler, 1948
  • Euplanta Barkley, 1949
  • Telomobionta Takhtajan, 1964
  • Embryobionta Cronquist et al., 1966
  • Metaphyta Whittaker, 1969

Viridiplantae (lit.'green plants')[6] is a clade of around 450,000–500,000 species of eukaryotic organisms, most of which obtain their energy by photosynthesis. The green plants are chloroplast-bearing autotrophs that play important primary production roles in both terrestrial and aquatic ecosystems.[7] They include green algae, which are primarily aquatic, and the land plants (embryophytes), which emerged within freshwater green algae.[8][9][10] Green algae traditionally excludes the land plants, rendering them a paraphyletic group, however it is cladistically accurate to think of land plants as a special clade of green algae that evolved to thrive on dry lands.[11] Since the realization that the embryophytes emerged from within the green algae, some authors are starting to include them.[11][12][13][14][15]

Viridiplantae species all have cells with cellulose in their cell walls, and primary chloroplasts derived from endosymbiosis with cyanobacteria that contain chlorophylls a and b and lack phycobilins. Corroborating this, a basal phagotroph Archaeplastida group has been found in the Rhodelphydia.[16] In some classification systems, the group has been treated as a kingdom,[17] under various names, e.g. Viridiplantae, Chlorobionta, or simply Plantae, the latter expanding the traditional plant kingdom to include the green algae. Adl et al., who produced a classification for all eukaryotes in 2005, introduced the name Chloroplastida for this group, reflecting the group having primary chloroplasts. They rejected the name Viridiplantae on the grounds that some of the species are not plants as understood traditionally.[18] Together with Rhodophyta and glaucophytes, Viridiplantae are thought to belong to a larger clade called Archaeplastida or Primoplantae.

Evolution

[edit]

Taxonomy

[edit]

Leliaert et al, 2012 propose the following simplified taxonomy of the Viridiplantae.[19]

Phylogeny

[edit]

In 2019, a phylogeny based on genomes and transcriptomes from 1,153 plant species was proposed.[21] The placing of algal groups is supported by phylogenies based on genomes from the Mesostigmatophyceae and Chlorokybophyceae that have since been sequenced. Both the "chlorophyte algae" and the "streptophyte algae" are treated as paraphyletic (vertical bars beside phylogenetic tree diagram) in this analysis.[22][23] The classification of Bryophyta is supported both by Puttick et al. 2018,[24] and by phylogenies involving the hornwort genomes that have also since been sequenced.[25][26]

Archaeplastida
"chlorophyte algae"
"streptophyte algae"

Ancestrally, the green algae were flagellates.[19]

References

[edit]
  1. ^ Tang, Qing (24 February 2020). "A one-billion-year-old multicellular chlorophyte". Nature Ecology and Evolution. 4 (5): 543–549. doi:10.1038/s41559-020-1122-9. PMC 8668152.
  2. ^ Copeland, Herbert F. (1938). "The kingdoms of organisms". The Quarterly Review of Biology. 13 (4): 383–420. doi:10.1086/394568. S2CID 84634277.
  3. ^ Copeland, H.F. (1956). The Classification of Lower Organisms. Palo Alto: Pacific Books. p. 6.
  4. ^ Whittaker, R.H. (January 1969). "New concepts of kingdoms or organisms. Evolutionary relations are better represented by new classifications than by the traditional two kingdoms" (PDF). Science. 163 (3863): 150–60. CiteSeerX 10.1.1.403.5430. doi:10.1126/science.163.3863.150. PMID 5762760. Archived from the original (PDF) on 2017-11-17. Retrieved 2015-01-31.
  5. ^ van den Hoek, C.; Jahns, H.M. (1978). Einführung in die Phykologie (in German). Stuttgart: Georg Thieme Verlag. ISBN 9783135511016.
  6. ^ a b Cavalier-Smith, Tom (1981). "Eukaryote kingdoms: seven or nine?". Bio Systems. 14 (3–4): 461–481. doi:10.1016/0303-2647(81)90050-2. PMID 7337818.
  7. ^ Leebens-Mack, J.H.; et al. (One Thousand Plant Transcriptomes Initiative) (October 2019). "One thousand plant transcriptomes and the phylogenomics of green plants". Nature. 574 (7780): 679–685. doi:10.1038/s41586-019-1693-2. PMC 6872490. PMID 31645766.
  8. ^ Cocquyt, Ellen; Verbruggen, Heroen; Leliaert, Frederik; Zechman, Frederick W; Sabbe, Koen; De Clerck, Olivier (February 2009). "Gain and loss of elongation factor genes in green algae". BMC Evolutionary Biology. 9: 39. doi:10.1186/1471-2148-9-39. PMC 2652445. PMID 19216746.
  9. ^ Becker, B. (2007). Function and evolution of the vacuolar compartment in green algae and land plants (Viridiplantae). International Review of Cytology. Vol. 264. pp. 1–24. doi:10.1016/S0074-7696(07)64001-7. ISBN 9780123742636. PMID 17964920.
  10. ^ Kim E, Graham L (July 2008). Redfield RJ (ed.). "EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveolata". PLOS ONE. 3 (7): e2621. Bibcode:2008PLoSO...3.2621K. doi:10.1371/journal.pone.0002621. PMC 2440802. PMID 18612431.
  11. ^ a b Delwiche, C.F.; Timme, R.E. (June 2011). "Plants". Current Biology. 21 (11): R417–22. doi:10.1016/j.cub.2011.04.021. PMID 21640897.
  12. ^ "Charophycean Green Algae Home Page". www.life.umd.edu. Retrieved 2018-02-24.
  13. ^ Ruhfel, Brad R.; Gitzendanner, Matthew A.; Soltis, Pamela S.; Soltis, Douglas E.; Burleigh, J. Gordon (February 2014). "From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes". BMC Evolutionary Biology. 14: 23. doi:10.1186/1471-2148-14-23. PMC 3933183. PMID 24533922.
  14. ^ Delwiche, Charles F.; Cooper, E.D. (October 2015). "The Evolutionary Origin of a Terrestrial Flora". Current Biology. 25 (19): R899–910. doi:10.1016/j.cub.2015.08.029. PMID 26439353.
  15. ^ Parfrey, Laura Wegener; Lahr, Daniel J. G.; Knoll, Andrew H.; Katz, Laura A. (August 2011). "Estimating the timing of early eukaryotic diversification with multigene molecular clocks". Proceedings of the National Academy of Sciences of the United States of America. 108 (33): 13624–9. Bibcode:2011PNAS..10813624P. doi:10.1073/pnas.1110633108. PMC 3158185. PMID 21810989.
  16. ^ Bowles, Alexander M. C.; Williamson, Christopher J.; Williams, Tom A.; Lenton, Timothy M.; Donoghue, Philip C. J. (2022-10-31). "The origin and early evolution of plants". Trends in Plant Science. 28 (3): 312–329. doi:10.1016/j.tplants.2022.09.009. hdl:10871/131900. PMID 36328872. S2CID 253303816.
  17. ^ "Viridiplantae". Retrieved 2009-03-08.
  18. ^ Adl, Sina M.; Simpson, Alastair G.B.; Farmer, Mark A.; et al. (2005). "The new higher level classification of eukaryotes with emphasis on the taxonomy of protists". The Journal of Eukaryotic Microbiology. 52 (5): 399–451. doi:10.1111/j.1550-7408.2005.00053.x. PMID 16248873. S2CID 8060916.
  19. ^ a b Leliaert, Frederik; Smith, David R.; Moreau, Hervé; Herron, Matthew D.; Verbruggen, Heroen; Delwiche, Charles F.; De Clerck, Olivier (2012). "Phylogeny and molecular evolution of the green algae" (PDF). Critical Reviews in Plant Sciences. 31 (1): 1–46. Bibcode:2012CRvPS..31....1L. doi:10.1080/07352689.2011.615705. S2CID 17603352.
  20. ^ Marin, B. (September 2012). "Nested in the Chlorellales or independent class? Phylogeny and classification of the Pedinophyceae (Viridiplantae) revealed by molecular phylogenetic analyses of complete nuclear and plastid-encoded rRNA operons". Protist. 163 (5): 778–805. doi:10.1016/j.protis.2011.11.004. PMID 22192529.
  21. ^ Leebens-Mack, M.; Barker, M.; Carpenter, E.; et al. (2019). "One thousand plant transcriptomes and the phylogenomics of green plants". Nature. 574 (7780): 679–685. doi:10.1038/s41586-019-1693-2. PMC 6872490. PMID 31645766.
  22. ^ Liang, Zhe; et al. (2019). "Mesostigma viride Genome and Transcriptome Provide Insights into the Origin and Evolution of Streptophyta". Advanced Science. 7 (1): 1901850. doi:10.1002/advs.201901850. PMC 6947507. PMID 31921561.
  23. ^ Wang, Sibo; et al. (2020). "Genomes of early-diverging streptophyte algae shed light on plant terrestrialization". Nature Plants. 6 (2): 95–106. doi:10.1038/s41477-019-0560-3. PMC 7027972. PMID 31844283.
  24. ^ Puttick, Mark; et al. (2018). "The Interrelationships of Land Plants and the Nature of the Ancestral Embryophyte". Current Biology. 28 (5): 733–745. doi:10.1016/j.cub.2018.01.063. hdl:10400.1/11601. PMID 29456145.
  25. ^ Zhang, Jian; et al. (2020). "The hornwort genome and early land plant evolution". Nature Plants. 6 (2): 107–118. doi:10.1038/s41477-019-0588-4. PMC 7027989. PMID 32042158.
  26. ^ Li, Fay Wei; et al. (2020). "Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts". Nature Plants. 6 (3): 259–272. doi:10.1038/s41477-020-0618-2. PMC 8075897. PMID 32170292.