Jump to content

Multiply perfect number: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Undid revision 812208932 by 180.190.198.57 (talk) not what the reference says, justify in talk if you think it is correct
corrected - per ref (tables under "Various Records" header and unzipped datafile for discoverer) - smallest not first discovered
Line 31: Line 31:
| 7 || 141310897947438348259849402738485523264343544818565120000 || TE Mason, 1911
| 7 || 141310897947438348259849402738485523264343544818565120000 || TE Mason, 1911
|-
|-
| 8 || 2.34111439263306338... × 10<sup>161</sup> || [[Paul Poulet]], 1929<ref name=fl>Flammenkamp</ref>
| 8 || 8.26809968707776137... × 10<sup>132</sup> || Gretton, 1990<ref name=fl>Flammenkamp</ref>
|-
|-
| 9 || 7.9842491755534198... × 10<sup>465</sup> || Fred Helenius<ref name=fl/>
| 9 || 7.9842491755534198... × 10<sup>465</sup> || Fred Helenius<ref name=fl/>

Revision as of 01:32, 27 November 2017

Demonstration, with Cuisenaire rods, of the 2-perfection of the number 6

In mathematics, a multiply perfect number (also called multiperfect number or pluperfect number) is a generalization of a perfect number.

For a given natural number k, a number n is called k-perfect (or k-fold perfect) if and only if the sum of all positive divisors of n (the divisor function, σ(n)) is equal to kn; a number is thus perfect if and only if it is 2-perfect. A number that is k-perfect for a certain k is called a multiply perfect number. As of 2014, k-perfect numbers are known for each value of k up to 11.[1]

It can be proven that:

  • For a given prime number p, if n is p-perfect and p does not divide n, then pn is (p+1)-perfect. This implies that an integer n is a 3-perfect number divisible by 2 but not by 4, if and only if n/2 is an odd perfect number, of which none are known.
  • If 3n is 4k-perfect and 3 does not divide n, then n is 3k-perfect.

Smallest k-perfect numbers

The following table gives an overview of the smallest k-perfect numbers for k ≤ 11 (sequence A007539 in the OEIS):

k Smallest k-perfect number Found by
1 1 ancient
2 6 ancient
3 120 ancient
4 30240 René Descartes, circa 1638
5 14182439040 René Descartes, circa 1638
6 154345556085770649600 Robert Daniel Carmichael, 1907
7 141310897947438348259849402738485523264343544818565120000 TE Mason, 1911
8 8.26809968707776137... × 10132 Gretton, 1990[1]
9 7.9842491755534198... × 10465 Fred Helenius[1]
10 2.86879876441793479... × 10923 Ron Sorli[1]
11 2.51850413483992918... × 101906 George Woltman[1]

For example, 120 is 3-perfect because the sum of the divisors of 120 is
1+2+3+4+5+6+8+10+12+15+20+24+30+40+60+120 = 360 = 3 × 120.

Properties

  • The number of multiperfect numbers less than X is for all positive ε.[2]
  • The only known odd multiply perfect number is 1.[citation needed]

Specific values of k

Perfect numbers

A number n with σ(n) = 2n is perfect.

Triperfect numbers

A number n with σ(n) = 3n is triperfect. An odd triperfect number must exceed 1070, have at least 12 distinct prime factors, the largest exceeding 105.[3]

Citations

  1. ^ a b c d e Flammenkamp
  2. ^ Sándor et al (2006) p.105
  3. ^ Sandor et al (2006) pp.108–109

References

  • Flammenkamp, Achim. "The Multiply Perfect Numbers Page". Retrieved 22 January 2014.
  • Laatsch, Richard (1986). "Measuring the abundancy of integers". Mathematics Magazine. 59 (2): 84–92. ISSN 0025-570X. JSTOR 2690424. MR 0835144. Zbl 0601.10003.
  • Kishore, Masao (1987). "Odd triperfect numbers are divisible by twelve distinct prime factors". J. Aust. Math. Soc. Ser. A. 42 (2): 173–182. doi:10.1017/s1446788700028184. ISSN 0263-6115. Zbl 0612.10006.
  • Merickel, James G. (1999). "Problem 10617 (Divisors of sums of divisors)". Am. Math. Monthly. 106 (7): 693. JSTOR 2589515. MR 1543520.
  • Weiner, Paul A. (2000). "The abundancy ratio, a measure of perfection". Math. Mag. 73 (4): 307–310. JSTOR 2690980. MR 1573474.
  • Sorli, Ronald M. (2003), Algorithms in the study of multiperfect and odd perfect numbers
  • Ryan, Richard F. (2003). "A simpler dense proof regarding the abundancy index". Math. Mag. 76 (4): 299–301. JSTOR 3219086. MR 1573698.
  • Guy, Richard K. (2004). Unsolved problems in number theory (3rd ed.). Springer-Verlag. B2. ISBN 978-0-387-20860-2. Zbl 1058.11001.
  • Broughan, Kevin A.; Zhou, Qizhi (2008). "Odd multiperfect numbers of abundancy 4". J. Number Theory. 126 (6): 1566–1575. doi:10.1016/j.jnt.2007.02.001. MR 2419178.
  • Sándor, József; Mitrinović, Dragoslav S.; Crstici, Borislav, eds. (2006). Handbook of number theory I. Dordrecht: Springer-Verlag. ISBN 1-4020-4215-9. Zbl 1151.11300.
  • Sándor, Jozsef; Crstici, Borislav, eds. (2004). Handbook of number theory II. Dordrecht: Kluwer Academic. pp. 32–36. ISBN 1-4020-2546-7. Zbl 1079.11001.

External links