Jump to content

Multiply perfect number: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎Smallest k-perfect numbers: corrected k=9 and k=10 to smallest found from first found
Line 33: Line 33:
| 8 || 8.26809968707776137... × 10<sup>132</sup> || Stephen F. Gretton, 1990<ref name=fl>Flammenkamp</ref>
| 8 || 8.26809968707776137... × 10<sup>132</sup> || Stephen F. Gretton, 1990<ref name=fl>Flammenkamp</ref>
|-
|-
| 9 || 7.9842491755534198... × 10<sup>465</sup> || Fred Helenius<ref name=fl/>
| 9 || 5.61... × 10<sup>286</sup> || Fred Helenius, 1995<ref name=fl/>
|-
|-
| 10 || 2.86879876441793479... × 10<sup>923</sup> || Ron Sorli<ref name=fl/>
| 10 || 4.48... × 10<sup>638</sup> || [[George Woltman]], 2013<ref name=fl/>
|-
|-
| 11 || 2.51850413483992918... × 10<sup>1906</sup> || [[George Woltman]]<ref name=fl/>
| 11 || 2.51850413483992918... × 10<sup>1906</sup> || George Woltman, 2001<ref name=fl/>
|}
|}



Revision as of 05:10, 27 November 2017

Demonstration, with Cuisenaire rods, of the 2-perfection of the number 6

In mathematics, a multiply perfect number (also called multiperfect number or pluperfect number) is a generalization of a perfect number.

For a given natural number k, a number n is called k-perfect (or k-fold perfect) if and only if the sum of all positive divisors of n (the divisor function, σ(n)) is equal to kn; a number is thus perfect if and only if it is 2-perfect. A number that is k-perfect for a certain k is called a multiply perfect number. As of 2014, k-perfect numbers are known for each value of k up to 11.[1]

It can be proven that:

  • For a given prime number p, if n is p-perfect and p does not divide n, then pn is (p+1)-perfect. This implies that an integer n is a 3-perfect number divisible by 2 but not by 4, if and only if n/2 is an odd perfect number, of which none are known.
  • If 3n is 4k-perfect and 3 does not divide n, then n is 3k-perfect.

Smallest k-perfect numbers

The following table gives an overview of the smallest k-perfect numbers for k ≤ 11 (sequence A007539 in the OEIS):

k Smallest k-perfect number Found by
1 1 ancient
2 6 ancient
3 120 ancient
4 30240 René Descartes, circa 1638
5 14182439040 René Descartes, circa 1638
6 154345556085770649600 Robert Daniel Carmichael, 1907
7 141310897947438348259849402738485523264343544818565120000 TE Mason, 1911
8 8.26809968707776137... × 10132 Stephen F. Gretton, 1990[1]
9 5.61... × 10286 Fred Helenius, 1995[1]
10 4.48... × 10638 George Woltman, 2013[1]
11 2.51850413483992918... × 101906 George Woltman, 2001[1]

For example, 120 is 3-perfect because the sum of the divisors of 120 is
1+2+3+4+5+6+8+10+12+15+20+24+30+40+60+120 = 360 = 3 × 120.

Properties

  • The number of multiperfect numbers less than X is for all positive ε.[2]
  • The only known odd multiply perfect number is 1.[citation needed]

Specific values of k

Perfect numbers

A number n with σ(n) = 2n is perfect.

Triperfect numbers

A number n with σ(n) = 3n is triperfect. An odd triperfect number must exceed 1070, have at least 12 distinct prime factors, the largest exceeding 105.[3]

Citations

  1. ^ a b c d e Flammenkamp
  2. ^ Sándor et al (2006) p.105
  3. ^ Sandor et al (2006) pp.108–109

References

  • Flammenkamp, Achim. "The Multiply Perfect Numbers Page". Retrieved 22 January 2014.
  • Laatsch, Richard (1986). "Measuring the abundancy of integers". Mathematics Magazine. 59 (2): 84–92. ISSN 0025-570X. JSTOR 2690424. MR 0835144. Zbl 0601.10003.
  • Kishore, Masao (1987). "Odd triperfect numbers are divisible by twelve distinct prime factors". J. Aust. Math. Soc. Ser. A. 42 (2): 173–182. doi:10.1017/s1446788700028184. ISSN 0263-6115. Zbl 0612.10006.
  • Merickel, James G. (1999). "Problem 10617 (Divisors of sums of divisors)". Am. Math. Monthly. 106 (7): 693. JSTOR 2589515. MR 1543520.
  • Weiner, Paul A. (2000). "The abundancy ratio, a measure of perfection". Math. Mag. 73 (4): 307–310. JSTOR 2690980. MR 1573474.
  • Sorli, Ronald M. (2003), Algorithms in the study of multiperfect and odd perfect numbers
  • Ryan, Richard F. (2003). "A simpler dense proof regarding the abundancy index". Math. Mag. 76 (4): 299–301. JSTOR 3219086. MR 1573698.
  • Guy, Richard K. (2004). Unsolved problems in number theory (3rd ed.). Springer-Verlag. B2. ISBN 978-0-387-20860-2. Zbl 1058.11001.
  • Broughan, Kevin A.; Zhou, Qizhi (2008). "Odd multiperfect numbers of abundancy 4". J. Number Theory. 126 (6): 1566–1575. doi:10.1016/j.jnt.2007.02.001. MR 2419178.
  • Sándor, József; Mitrinović, Dragoslav S.; Crstici, Borislav, eds. (2006). Handbook of number theory I. Dordrecht: Springer-Verlag. ISBN 1-4020-4215-9. Zbl 1151.11300.
  • Sándor, Jozsef; Crstici, Borislav, eds. (2004). Handbook of number theory II. Dordrecht: Kluwer Academic. pp. 32–36. ISBN 1-4020-2546-7. Zbl 1079.11001.

External links