Order-6-3 square honeycomb
Order-6-3 square honeycomb | |
---|---|
Type | Regular honeycomb |
Schläfli symbol | {4,6,3} |
Coxeter diagram | |
Cells | {4,6} |
Faces | {4} |
Vertex figure | {6,3} |
Dual | {3,6,4} |
Coxeter group | [4,6,3] |
Properties | Regular |
In the geometry of hyperbolic 3-space, the order-6-3 square honeycomb or 4,6,3 honeycomb is a regular space-filling tessellation (or honeycomb). Each infinite cell consists of a hexagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.
Geometry
[edit]The Schläfli symbol of the order-6-3 square honeycomb is {4,6,3}, with three order-4 hexagonal tilings meeting at each edge. The vertex figure of this honeycomb is a hexagonal tiling, {6,3}.
Poincaré disk model |
Ideal surface |
Related polytopes and honeycombs
[edit]It is a part of a series of regular polytopes and honeycombs with {p,6,3} Schläfli symbol, and dodecahedral vertex figures:
Order-6-3 pentagonal honeycomb
[edit]Order-6-3 pentagonal honeycomb | |
---|---|
Type | Regular honeycomb |
Schläfli symbol | {5,6,3} |
Coxeter diagram | |
Cells | {5,6} |
Faces | {5} |
Vertex figure | {6,3} |
Dual | {3,6,5} |
Coxeter group | [5,6,3] |
Properties | Regular |
In the geometry of hyperbolic 3-space, the order-6-3 pentagonal honeycomb or 5,6,3 honeycomb is a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-6 pentagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.
The Schläfli symbol of the order-6-3 pentagonal honeycomb is {5,6,3}, with three order-6 pentagonal tilings meeting at each edge. The vertex figure of this honeycomb is a hexagonal tiling, {6,3}.
Poincaré disk model |
Ideal surface |
Order-6-3 hexagonal honeycomb
[edit]Order-6-3 hexagonal honeycomb | |
---|---|
Type | Regular honeycomb |
Schläfli symbol | {6,6,3} |
Coxeter diagram | |
Cells | {6,6} |
Faces | {6} |
Vertex figure | {6,3} |
Dual | {3,6,6} |
Coxeter group | [6,6,3] |
Properties | Regular |
In the geometry of hyperbolic 3-space, the order-6-3 hexagonal honeycomb or 6,6,3 honeycomb is a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-6 hexagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.
The Schläfli symbol of the order-6-3 hexagonal honeycomb is {6,6,3}, with three order-5 hexagonal tilings meeting at each edge. The vertex figure of this honeycomb is a hexagonal tiling, {6,3}.
Poincaré disk model |
Ideal surface |
Order-6-3 apeirogonal honeycomb
[edit]Order-6-3 apeirogonal honeycomb | |
---|---|
Type | Regular honeycomb |
Schläfli symbol | {∞,6,3} |
Coxeter diagram | |
Cells | {∞,6} |
Faces | Apeirogon {∞} |
Vertex figure | {6,3} |
Dual | {3,6,∞} |
Coxeter group | [∞,6,3] |
Properties | Regular |
In the geometry of hyperbolic 3-space, the order-6-3 apeirogonal honeycomb or ∞,6,3 honeycomb is a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-6 apeirogonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.
The Schläfli symbol of the apeirogonal tiling honeycomb is {∞,6,3}, with three order-6 apeirogonal tilings meeting at each edge. The vertex figure of this honeycomb is a hexagonal tiling, {6,3}.
The "ideal surface" projection below is a plane-at-infinity, in the Poincaré half-space model of H3. It shows an Apollonian gasket pattern of circles inside a largest circle.
Poincaré disk model |
Ideal surface |
See also
[edit]References
[edit]- Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
- The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
- Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapters 16–17: Geometries on Three-manifolds I, II)
- George Maxwell, Sphere Packings and Hyperbolic Reflection Groups, JOURNAL OF ALGEBRA 79,78-97 (1982) [1]
- Hao Chen, Jean-Philippe Labbé, Lorentzian Coxeter groups and Boyd-Maxwell ball packings, (2013)[2]
- Visualizing Hyperbolic Honeycombs arXiv:1511.02851 Roice Nelson, Henry Segerman (2015)
External links
[edit]- John Baez, Visual insights: {7,3,3} Honeycomb (2014/08/01) {7,3,3} Honeycomb Meets Plane at Infinity (2014/08/14)
- Danny Calegari, Kleinian, a tool for visualizing Kleinian groups, Geometry and the Imagination 4 March 2014. [3]