Jump to content

英文维基 | 中文维基 | 日文维基 | 草榴社区

Alternating multilinear map

From Wikipedia, the free encyclopedia
(Redirected from Alternatization)

In mathematics, more specifically in multilinear algebra, an alternating multilinear map is a multilinear map with all arguments belonging to the same vector space (for example, a bilinear form or a multilinear form) that is zero whenever any pair of its arguments is equal. This generalizes directly to a module over a commutative ring.

The notion of alternatization (or alternatisation) is used to derive an alternating multilinear map from any multilinear map of which all arguments belong to the same space.

Definition

[edit]

Let be a commutative ring and , be modules over . A multilinear map of the form is said to be alternating if it satisfies the following equivalent conditions:

  1. whenever there exists such that then .[1][2]
  2. whenever there exists such that then .[1][3]

Vector spaces

[edit]

Let be vector spaces over the same field. Then a multilinear map of the form is alternating if it satisfies the following condition:

  • if are linearly dependent then .

Example

[edit]

In a Lie algebra, the Lie bracket is an alternating bilinear map. The determinant of a matrix is a multilinear alternating map of the rows or columns of the matrix.

Properties

[edit]

If any component of an alternating multilinear map is replaced by for any and in the base ring , then the value of that map is not changed.[3]

Every alternating multilinear map is antisymmetric,[4] meaning that[1] or equivalently, where denotes the permutation group of degree and is the sign of .[5] If is a unit in the base ring , then every antisymmetric -multilinear form is alternating.

Alternatization

[edit]

Given a multilinear map of the form the alternating multilinear map defined by is said to be the alternatization of .

Properties

  • The alternatization of an -multilinear alternating map is times itself.
  • The alternatization of a symmetric map is zero.
  • The alternatization of a bilinear map is bilinear. Most notably, the alternatization of any cocycle is bilinear. This fact plays a crucial role in identifying the second cohomology group of a lattice with the group of alternating bilinear forms on a lattice.

See also

[edit]

Notes

[edit]
  1. ^ a b c Lang 2002, pp. 511–512
  2. ^ Bourbaki 2007, A III.80, §4
  3. ^ a b Dummit & Foote 2004, p. 436
  4. ^ Rotman 1995, p. 235
  5. ^ Tu 2011, p. 23

References

[edit]
  • Bourbaki, N. (2007). Eléments de mathématique. Vol. Algèbre Chapitres 1 à 3 (reprint ed.). Springer.
  • Dummit, David S.; Foote, Richard M. (2004). Abstract Algebra (3rd ed.). Wiley.
  • Lang, Serge (2002). Algebra. Graduate Texts in Mathematics. Vol. 211 (revised 3rd ed.). Springer. ISBN 978-0-387-95385-4. OCLC 48176673.
  • Rotman, Joseph J. (1995). An Introduction to the Theory of Groups. Graduate Texts in Mathematics. Vol. 148 (4th ed.). Springer. ISBN 0-387-94285-8. OCLC 30028913.
  • Tu, Loring W. (2011). An Introduction to Manifolds. Springer-Verlag New York. ISBN 978-1-4419-7400-6.
');