Jump to content

英文维基 | 中文维基 | 日文维基 | 草榴社区

2020 in reptile paleontology

From Wikipedia, the free encyclopedia

List of years in reptile paleontology
In science
2017
2018
2019
2020
2021
2022
2023
In paleobotany
2017
2018
2019
2020
2021
2022
2023
In paleontology
2017
2018
2019
2020
2021
2022
2023
In arthropod paleontology
2017
2018
2019
2020
2021
2022
2023
In paleoentomology
2017
2018
2019
2020
2021
2022
2023
In paleomalacology
2017
2018
2019
2020
2021
2022
2023
In archosaur paleontology
2017
2018
2019
2020
2021
2022
2023
In mammal paleontology
2017
2018
2019
2020
2021
2022
2023
In paleoichthyology
2017
2018
2019
2020
2021
2022
2023

This list of fossil reptiles described in 2020 is a list of new taxa of fossil reptiles that were described during the year 2020, as well as other significant discoveries and events related to reptile paleontology that occurred in 2020.

Lizards and snakes

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images
Boipeba[1] Gen. et sp. nov Fachini et al. Late Cretaceous Adamantina  Brazil A snake belonging to the group Scolecophidia. The type species is B. tayasuensis.
Borealoilysia[2] Gen. et sp. nov Valid Head Middle Eocene Bridger  United States
( Wyoming)
An aniliid snake. Genus includes new species B. gunnelli. Announced in 2020; the final version of the article naming was published in 2021.
Bothriagenys flectomendax[3] Sp. nov In press Wick & Shiller Late Cretaceous (early Campanian) Aguja  United States
( Texas)
A member of Borioteiioidea of uncertain phylogenetic placement.
Calumma benovskyi[4] Sp. nov Čerňanský et al. Early Miocene Hiwegi  Kenya A chameleon, a species of Calumma
Calumma benovskyi
Chalcides augei[5] Sp. nov Valid Čerňanský et al. Early middle Miocene  Russia A skink, a species of Chalcides. Announced in 2019; the final version of the article naming it was published in 2020.
Eoconstrictor[6] Gen. et comb. nov Valid Scanferla & Smith Eocene Messel  Germany A booid snake. The type species is "Palaeopython" fischeri Schaal (2004).
Epileolis[7] Gen. et sp. nov Valid Alifanov Late Paleocene  Mongolia A lizard belonging to the family Agamidae. Genus includes new species E. reshetovi.
Gavialimimus[8] Gen. et sp. nov Valid Strong et al. Late Cretaceous  Morocco A mosasaur belonging to the subfamily Plioplatecarpinae. Genus includes new species G. almaghribensis.
Gnathomortis[9] Gen. et comb. nov Valid Lively Late Cretaceous (middle Campanian)  United States
( Colorado)
A mosasaur belonging to the family Mosasauridae; a new genus for "Prognathodon" stadtmani Kass (1999).
Hydrargysaurus[3] Gen. et sp. nov In press Wick & Shiller Late Cretaceous (early Campanian) Aguja  United States
( Texas)
A member or a relative of the group Borioteiioidea. Genus includes new species H. gladius.
Hypostylos[3] Gen. et sp. nov In press Wick & Shiller Late Cretaceous (early Campanian) Aguja  United States
( Texas)
A member of Scincomorpha belonging to the "paramacellodid"/cordylid grade. Genus includes new species H. lehmani.
Kopidosaurus[10] Gen. et sp. nov Scarpetta Eocene Willwood  United States
( Wyoming)
A member of Pleurodonta of uncertain phylogenetic placement. The type species is K. perplexus.
Messelopython[11] Gen. et sp. nov Valid Zaher & Smith Eocene Messel pit  Germany A stem pythonid snake. Genus includes new species M. freyi.
Neokotus[12] Gen. et sp. nov Valid Bittencourt et al. Early Cretaceous (Valanginian) Quiricó  Brazil A lizard belonging to the family Paramacellodidae. The type species is N. sanfranciscanus.
Vipera latastei ebusitana[13] Subsp. nov Valid Torres-Roig et al. Pleistocene–Holocene  Spain A viper, a subspecies of Vipera latastei.

Research

[edit]
  • New fossil material of squamates is described from the Upper Cretaceous Fruitland and Kirtland formations (New Mexico, United States) by Woolley, Smith & Sertich (2020), expanding known taxonomic and morphological diversity of lizards within the "Hunter Wash Local Fauna".[14]
  • A study on the affinities of putative gekkotan eggshells from the Late Cretaceous of Europe is published by Choi et al. (2020), who interpret the fossil material of Pseudogeckoolithus as theropod eggshells.[15]
  • Fossils of tupinambine teiids are described from the late Eocene of the Quercy Phosphorites Formation (France) by Louis & Santiago (2020), representing the first record of this family from the Paleogene of Europe.[16]
  • A dentary of a cnemidophorine teiid is described from the Miocene of the Ogallala Group (Nebraska, United States) by Scarpetta (2020), who evaluates the implications of this specimen for the knowledge of the evolutionary history of cnemidophorines in North America during the Neogene.[17]
  • The first known fossil example of an iguana nesting burrow is reported from the Pleistocene Grotto Beach Formation (The Bahamas) by Martin et al. (2020).[18]
  • A study on the anatomy of the skull of Ophisaurus acuminatus, and on the taxonomic validity of this species, is published by Klembara & Čerňanský (2020).[19]
  • Fossil material of the monitor lizards is reported for the first time from the late Miocene localities in Armenia and Georgia by Vasilyan & Bukhsianidze (2020).[20]
  • A study on the evolutionary history of mosasauroids, comparing their evolutionary rates and traits to those of plesiosaurs and aiming to determine whether the rise and diversification of mosasauroids was influenced by competition with or disappearance of some plesiosaur taxa, is published by Madzia & Cau (2020).[21]
  • Grigoriev & Grabovskiy (2020) describe new fossil material of a tylosaurine from the Upper Cretaceous (Turonian) of the Chukotka Region (Russia), representing one of the oldest and northernmost mosasaur records reported so far, and evaluate the implications of this fossil material (as well as mosasaur fossils from the Santonian of the Komi Republic and from the CampanianMaastrichtian of the Sakhalin Island) for the knowledge of the paleogeography and possible migrations of Arctic mosasaurs.[22]
  • A study on pathological features of a specimen of Prognathodon (belonging or related to the species P. sectorius) from the Maastrichtian Gulpen Formation (the Netherlands) is published by Bastiaans et al. (2020), who consider it most likely that this specimen was bitten in the snout by a large, possibly conspecific mosasaur, making it one of the few specimens with unambiguous evidence of agonistic interactions amongst mosasaurs.[23]
  • A study on the morphology of the snout of Taniwhasaurus antarcticus, indicating the presence of a complex internal neurovascular system of branched channels similar to systems present in extant aquatic vertebrates such as cetaceans and crocodiles, is published by Álvarez–Herrera, Agnolin & Novas (2020).[24]
  • Zietlow (2020) recovers growth series of Tylosaurus proriger and T. nepaeolicus, and tests the hypothesis that T. kansasensis represent juveniles of T. nepaeolicus.[25]
  • Redescription of Palaeophis oweni is published by Georgalis, Del Favero & Delfino (2020).[26]
  • Eocene snake vertebrae from Landana and Sassa-Zao (Angola), originally referred to Palaeophis aff. typhaeus, are assigned to the species Palaeophis africanus by Folie et al. (2020), who interpret these fossils as confirming the aquatic capabilities of palaeophiid snakes, and evaluate the implications of these fossils for the debate on the existence of primitive and advanced grades among palaeophiid snakes.[27]
  • New information on the anatomy of the Eocene fossil boas Messelophis variatus and Rieppelophis ermannorum, based on data from new specimens from the Messel pit (Germany), is presented by Scanferla & Smith (2020).[28]
  • Description of new fossil material of Thaumastophis missiaeni from the Eocene Cambay Shale (India) and a study on the phylogenetic relationships of this snake is published by Zaher et al. (2020), who name a new family Thaumastophiidae.[29]

Ichthyosauromorphs

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images
Acuetzpalin[30] Gen. et sp. nov Valid Barrientos Lara, Alvarado Ortega, & Fernández Late Jurassic La Casita  Mexico An ichthyosaur belonging to the family Ophthalmosauridae. The type species is A. carranzai.
Cymbospondylus duelferi[31] Sp. nov Valid Klein et al. Middle Triassic (Anisian) Favret  United States
( Nevada)
Hauffiopteryx altera[32] Sp. nov Valid Maxwell & Cortés Early Jurassic (Toarcian) Posidonia Shale  Germany
Nannopterygius borealis[33] Sp. nov Valid Zverkov & Jacobs Early Cretaceous (Berriasian)  Norway
 Russia
Thalassodraco[34] Gen. et sp. nov Valid Jacobs & Martill Late Jurassic (Tithonian) Kimmeridge Clay  United Kingdom An ichthyosaur belonging to the family Ophthalmosauridae. The type species is T. etchesi.

Research

[edit]
  • Partial trunk region of the largest hupehsuchian reported so far is described from the Early Triassic of Hubei, China by Qiao, Iijima & Liu (2020), who interpret this specimen as evidence of early establishment of high predation pressure in the sea after the Permian–Triassic extinction event and before the Middle Triassic.[35]
  • New anatomical features of the holotype specimen of Cartorhynchus lenticarpus revealed by CT scanning, including unique dentition, are reported by Huang et al. (2020), who evaluate the implications of this species for the knowledge of the evolution of tooth morphology and diet in basal ichthyosauriforms.[36]
  • A caudal vertebra of a basal ichthyosauriform similar to grippidians, representing the youngest record of basal ichthyosauriforms to date, is described from the Middle Triassic (Ladinian) of Mallorca (Spain) by Matamales-Andreu et al. (2020).[37]
  • A study on the age of the fossils of Thaisaurus chonglakmanii is published by Tongtherm et al. (2020).[38]
  • A study on the tempo and mode of the morphological evolution of ichthyosaurs is published by Moon & Stubbs (2020).[39]
  • A study on skeletal pathologies in ichthyosaur specimens from the Middle Triassic Besano Formation and the Lower Jurassic Posidonia Shale, evaluating their implications for the knowledge of changing locomotory and behavioural constraints affecting different ichthyosaur taxa through time, is published by Pardo-Pérez, Kear & Maxwell (2020).[40]
  • Two new specimens of Mixosaurus cornalianus, preserving evidence of the presence of a dorsal fin and a well-developed, triangular dorsal lobe of the caudal fin in this species, are described from the Anisian Besano Formation (Italy) by Renesto et al. (2020).[41]
  • Jiang et al. (2020) report the discovery of remains of a thalattosaur belonging to the genus Xinpusaurus in the abdominal region of a specimen of Guizhouichthyosaurus from the Middle Triassic (Ladinian) Zhuganpo Member of the Falang Formation (China), and interpret this finding as likely the oldest evidence for predation on megafauna by marine tetrapods reported so far.[42]
  • A study on the anatomy of the holotype specimen of Temnodontosaurus crassimanus is published by Swaby & Lomax (2020), who consider T. crassimanus to be a valid species.[43]
  • Description of the most complete and best-preserved skeleton of Suevoleviathan integer is published by Maisch (2020).[44]
  • Partial skeleton of an ophthalmosaurid ichthyosaur, found with an ichthyosaur tooth (probably not belonging to the same specimen) stuck on its rib, is described from the Upper Jurassic Rosso Ammonitico Veronese Formation (Italy) by Serafini et al. (2020), possibly representing the first evidence of scavenging between two ichthyosaurs reported so far.[45]
  • A study on the anatomy and phylogenetic relationships of Maiaspondylus lindoei, "Ophthalmosaurus" cantabrigiensis and "Platypterygius" ochevi is published by Zverkov & Grigoriev (2020), who transfer "O". cantabrigiensis to the genus Maiaspondylus, and consider "P. ochevi to be a junior synonym of M. cantabrigiensis.[46]
  • Description of a new specimen of Muiscasaurus catheti from the Aptian Paja Formation (Colombia), providing new information on the anatomy of this taxon, and a study on the phylogenetic relationships of M. catheti is published by Páramo-Fonseca et al. (2020).[47]

Sauropterygians

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images
Brevicaudosaurus[48] Gen. et sp. nov Valid Shang, Wu & Li Middle Triassic (Ladinian) Falang  China A member of Nothosauroidea. The type species is B. jiyangshanensis.
Jucha[49] Gen. et sp. nov Valid Fischer et al. Early Cretaceous (Hauterivian) Klimovka  Russia An elasmosaurid plesiosaur. Genus includes new species J. squalea.
Ophthalmothule[50] Gen. et sp. nov Valid Roberts et al. Jurassic-Cretaceous boundary (latest Tithonian/early Berriasian) Agardhfjellet  Norway A cryptoclidid plesiosaur. The type species is O. cryostea.
Wunyelfia[51] Gen. et sp. nov In press Otero & Soto-Acuña Late Cretaceous (Maastrichtian) Quiriquina  Chile An aristonectine elasmosaurid plesiosaur. Genus includes new species W. maulensis.

Research

[edit]
  • A study on the osteology and evolution of the temporal region of the skull of placodonts is published by Maisch et al. (2020).[52]
  • A study on the anatomy of the skull and braincase of Parahenodus atancensis, and on the anatomy of the reconstructed brain, inner ear and neurosensory structures of this taxon, is published by De Miguel Chaves et al. (2020).[53]
  • New fossil material of Lariosaurus sanxiaensis is described from the Lower Triassic Jialingjiang Formation (China) by Li & Liu (2020), who also study the phylogenetic relationships of this taxon, as well as the predator-prey relationship in the associated fauna and their implications for the knowledge of the biotic recovery after the Permian–Triassic extinction event.[54]
  • New fossil material of cryptoclidid plesiosaurs, including the first occurrence of Vinialesaurus in the Southern Hemisphere, is described from the Jurassic of the Atacama Desert by Otero et al. (2020).[55]
  • Redescription of the holotype specimen of Aphrosaurus furlongi and a study on the evolution and phylogenetic relationships of elasmosaurid plesiosaurs is published by O'Gorman (2020), who names a new clade Euelasmosaurida.[56]
  • The first non-aristonectine elasmosaurid skeleton from Antarctica that preserves an associated lower jaw is described by O'Gorman et al. (2020).[57]
  • An isolated cervical centrum of a brachauchenine pliosaurid is described from the Cenomanian of Russia by Zverkov & Pervushov (2020), who interpret this fossil as belonging to one of the largest known pliosaurids, and consider it to be evidence of survival gigantic pliosaurids into the Cenomanian.[58]
  • A study on the evolution of the short-necked plesiosaurs throughout the Jurassic and Cretaceous periods is published by Fischer et al. (2020).[59]

Turtles

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images
Akoranemys[60] Gen. et sp. nov In press Pérez-García Late Cretaceous (Cenomanian)  Madagascar A bothremydid pleurodiran. Genus includes new species A. madagasika.
Alatochelon[61] Gen. et sp. nov Valid Pérez-García, Vlachos & Murelaga Early Pliocene Cigarrón  Spain A large tortoise. Genus includes new species A. myrteum.
Allaeochelys liliae[62] Sp. nov In press Carbot-Chanona et al. Miocene (Aquitanian) Mazantic Shale  Mexico
Amabilis[63] Gen. et sp. nov Valid Hermanson et al. Late Cretaceous Bauru  Brazil A podocnemidoid pleurodiran. Genus includes new species A. uchoensis.
Aragochersis[64] Gen. et sp. nov Valid Pérez García et al. Early Cretaceous (Albian) Escucha  Spain A member of the family Helochelydridae. Genus includes new species A. lignitesta.
Axestemys erquelinnensis[65] Sp. nov Valid Pérez-García & Smith Eocene (Ypresian)  Belgium Announced in 2020; the final version of the article naming was published in 2021.
Chelonoidis alburyorum keegani[66] Subsp. nov Valid Franz, Albury & Steadman Late Holocene  Turks and Caicos Islands A tortoise.
Chelonoidis alburyorum sementis[66] Subsp. nov Valid Franz, Albury & Steadman Late Holocene  Turks and Caicos Islands A tortoise.
Chersine khosatzkyi[67] Sp. nov Valid Redkozubov et al. Early Pliocene  Moldova A tortoise. Announced in 2020; the final version of the article naming it was published in 2021.
Gallica[68] Gen. et sp. nov Valid Pérez-García Late Paleocene  France A "macrobaenid" eucryptodiran. Genus includes new species G. lapparentiana.
Itapecuruemys[69] Gen. et sp. nov In press Batista, Carvalho & de la Fuente Early Cretaceous Itapecuru  Brazil A pleurodiran turtle belonging to the group Pelomedusoides. Genus includes new species I. amazonensis.
Jainemys[70] Gen. et comb. nov Valid Joyce & Bandyopadhyay Late Cretaceous (Maastrichtian) Lameta  India A member of the family Bothremydidae belonging to the tribe Kurmademydini; a new genus for "Carteremys" pisdurensis Jain (1977).
Lakotemys[71] Gen. et sp. nov Valid Joyce, Rollot & Murelaga Early Cretaceous (BerriasianValanginian) Lakota  United States
( South Dakota)
A member of the family Baenidae. The type species is L. australodakotensis.
Laurasichersis[72] Gen. et sp. nov Pérez García Paleocene (Thanetian) Sables de Bracheux  France A member of the family Sichuanchelyidae. The type species is L. relicta.
Melanochelys tapani[73] Nom. nov Valid Garbin, Bandyopadhyay & Joyce Miocene/Pliocene Siwalik Hills  India A species of Melanochelys; a replacement name for Nicoria tricarinata var. sivalensis Lydekker (1889).
Mesoclemmys vanegasorum[74] Sp. nov Valid Cadena et al. Laventan La Victoria  Colombia A species of Mesoclemmys
Palaeomauremys metallicus[75] Sp. nov Valid Karl Oligocene  Germany A member of the family Geoemydidae.
Palauchelys[76] Gen. et sp. nov In press López-Conde et al. Late Cretaceous (Campanian) Olmos  Mexico A bothremydid pleurodiran. Genus includes new species P. montellanoi.
Prochelidella buitreraensis[77] Sp. nov Valid Maniel et al. Late Cretaceous (Cenomanian) Candeleros  Argentina
Ragechelus[78] Gen. et sp. nov Valid Lapparent de Broin, Chirio & Bour Late Cretaceous (Maastrichtian) Farin-Doutchi  Niger A member of the family Podocnemididae belonging to the subfamily Erymnochelyinae. The type species is R. sahelica.
Solnhofia brachyrhyncha[79] Sp. nov Valid Anquetin & Püntener Late Jurassic (Kimmeridgian) Reuchenette   Switzerland A member of Thalassochelydia.
Testudo hellenica[80] Sp. nov Valid Garcia et al. Miocene (Vallesian)  Greece A species of Testudo.
Titanochelon kayadibiensis[81] Sp. nov Valid Karl, Staesche & Safi Miocene (Turolian -Tortonian)  Turkey A species of Titanochelon
Waluchelys[82] Gen. et sp. nov Valid Sterli et al. Late Triassic Quebrada del Barro  Argentina A member of the family Australochelyidae. Genus includes new species W. cavitesta.
Yaminuechelys sulcipeculiaris[83] Sp. nov Valid Oriozabala, Sterli & De La Fuente Late Cretaceous (CampanianMaastrichtian) La Colonia  Argentina A member of the family Chelidae

Research

[edit]
  • A study on the evolution of turtle skull architecture, aiming to assess the functional significance of changes in their skull architecture during feeding on the basis of data from extant and fossil taxa, is published by Ferreira et al. (2020).[84]
  • A study on the relation between ecology and shell shape in extant turtles, and its implications for the knowledge of the ecology of fossil turtles, is published by Dziomber, Joyce & Foth (2020).[85]
  • A study on the early evolution of turtles during the Triassic period is published by de la Fuente, Sterli & Krapovickas (2020).[86]
  • A study on non-marine turtle distribution and diversity from the Late Triassic to the Paleogene is published by Cleary et al. (2020).[87]
  • Szczygielski (2020) revises the first described Triassic turtle Chelytherium obscurum, and considers it to be synonymous with Proterochersis robusta.[88]
  • Description of new fossil material of Indochelys spatulata from the Jurassic Kota Formation (India), and a study on the anatomy and phylogenetic relationships of this taxon, is published by Joyce & Bandyopadhyay (2020).[89]
  • The first three-dimensional reconstruction of the skull of Kallokibotion bajazidi is presented by Martín-Jiménez, Codrea & Pérez-García (2020).[90]
  • Fossil material of an indeterminate member of Pelomedusoides is described from the Valanginian Rosablanca Formation (Colombia) by Cadena (2020), who interprets this finding as additional evidence supporting the occurrence of Pelomedusoides during the Valanginian in northern South America.[91]
  • New specimens of Araripemys barretoi, providing new information on the morphological variation within this species, are described from the Crato Formation and Romualdo Formation (Brazil) by Limaverde et al. (2020).[92]
  • A study on the histology of the shell of Cearachelys placidoi is published by Sena et al. (2020).[93]
  • New fossil material of Cordichelys is described from the Eocene Birket Qarun Formation and Qasr el Sagha Formation (Egypt) by Cherney et al. (2020), who evaluate the implications of these fossils for the knowledge of the morphological variation within the genus Cordichelys, its ecology and the relationship between Cordichelys and Stereogenys.[94]
  • Cadena et al. (2020) describe new fossil material of Stupendemys geographicus from the Miocene of Venezuela and Colombia, providing new information on the anatomy and paleobiology of this species.[95]
  • Peltochelys duchastelii is reinterpreted as a member of Paracryptodira by Joyce & Rollot (2020).[96]
  • Description of the anatomy of the skull of Pleurosternon bullockii is published by Evers, Rollot & Joyce (2020).[97]
  • Redescription of the anatomy of the skull and mandible of Sandownia harrisi is published by Evers & Joyce (2020).[98]
  • New information on the anatomy and stratigraphic and geographic distribution of Anosteira pulchra is presented by Adrian et al. (2020).[99]
  • A revision of the extinct geoemydid Echmatemys from North America, based mainly on data from a slab containing several turtle shells collected from the Bridgerian of Levett Creek (Wyoming, United States), is published by Vlachos (2020).[100]
  • A study on the phylogenetic relationships of a putative testudinoid Cardichelyon rogerwoodi is published by Joyce & Claude (2020), who consider it more likely that this taxon is a member of Kinosternoidea.[101]
  • Fossil remains of dermochelyid turtles representing the first confidently identified multispecies assemblage of dermochelyids are described from the Oligocene Chandler Bridge and Ashley formations (South Carolina, United States) by Fallon & Boessenecker (2020).[102]

Archosauriformes

[edit]

Archosaurs

[edit]

Other archosauriforms

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images
Polymorphodon[103] Gen. et sp. nov Valid Sues et al. Middle Triassic (Ladinian) Erfurt  Germany A non-archosaurian member of Archosauriformes. Genus includes new species P. adorfi.
Rugarhynchos[104] Gen. et comb. nov Valid Wynd et al. Late Triassic Chinle  United States
( New Mexico)
A member of the family Doswelliidae; a new genus for "Doswellia" sixmilensis Heckert, Lucas & Spielmann (2012).

Research

[edit]
  • New Early Triassic archosauriform track assemblage is described from the Gardetta Plateau (Western Alps, Italy) by Petti et al. (2020), who interpret this finding as evidence of the presence of archosauriforms at low latitudes soon after the Permian–Triassic extinction event, and name a new ichnotaxon Isochirotherium gardettensis.[105]
  • Postcranial material of an erythrosuchid from the Rassypnaya locality (Olenekian; Orenburg Oblast, Russia), previously referred to Vjushkovia triplicostata, is referred to the species Garjainia prima by Maidment et al. (2020), who evalue the implications of this fossil material for the knowledge of the phylogenetic relationships, body mass and locomotor musculature of erythrosuchids.[106]
  • Redescription of the anatomy of the holotype specimen of Chanaresuchus bonapartei and a study on the phylogenetic relationships of this species is published by Trotteyn & Ezcurra (2020).[107]
  • Redescription of the anatomy of the skull and mandible of Euparkeria capensis is published Sookias et al. (2020).[108]
  • A study on the joint mobility of the hindlimb of Euparkeria capensis, and on its implications for the knowledge of the evolution of the locomotor capabilities of archosaurs, is published by Demuth, Rayfield & Hutchinson (2020).[109]
  • Phytosaur remains are described from the Upper Triassic Upper Karoo Group (Zimbabwe) by Barrett et al. (2020), representing the first record of members of this group from sub-Saharan Africa.[110]
  • An assemblage of at least 21 phytosaur specimens dominated by juveniles and subadults is described from the Upper Triassic Tiki Formation (India) by Datta, Mukherjee & Ray (2020), who interpret this finding as likely evidence of parental care in phytosaurs, and study the taphonomy of the assemblage.[111]
  • A study on the evolution of the skull shape in phytosaurs is published by Datta, Sharma & Ray (2020).[112]
  • A study comparing teeth microwear textures in Machaeroprosopus pristinus, Mystriosuchus planirostris, Nicrosaurus kapffi, N. meyeri and "Smilosuchus" lithodendrorum, aiming to determine whether microwear texture differences reflect dietary differences between phytosaur species, is published by Bestwick et al. (2020).[113]

Other reptiles

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images
Carbonodraco Gen. et sp. nov Valid Mann et al. Carboniferous (Moscovian) Allegheny  United States A member of the family Acleistorhinidae. The type species is C. lundi. Announced in 2019;[114] the correction including the required ZooBank accession number was published in 2020.[115]
Elessaurus[116] Gen. et sp. nov Valid De-Oliveira et al. Early Triassic Sanga do Cabral  Brazil An archosauromorph reptile of uncertain phylogenetic placement, possibly a relative of tanystropheids. The type species is E. gondwanoccidens.

Eomurruna[117] Gen. et sp. nov Valid Hamley, Cisneros & Damiani Early Triassic Arcadia  Australia A procolophonid. Genus includes new species E. yurrgensis.
Feralisaurus[118] Gen. et sp. nov Valid Cavicchini, Zaher & Benton Middle Triassic (Anisian) Helsby Sandstone  United Kingdom A neodiapsid reptile of uncertain phylogenetic placement, possibly a member of Lepidosauromorpha. The type species is F. corami.
Gunakadeit[119] Gen. et sp. nov Valid Druckenmiller et al. Late Triassic (Norian) Hound Island  United States
( Alaska)
A thalattosaur. The type species is G. joseeae.
Heishanosaurus[120] Gen. et sp. nov Valid Dong et al. Early Cretaceous (AptianAlbian) Shahai  China A member of Choristodera. The type species is H. pygmaeus.
Lanceirosphenodon[121] Gen. et sp. nov Valid Vivar et al. Late Triassic (Norian) Candelária  Brazil A rhynchocephalian. Genus includes new species L. ferigoloi.
Micromenodon[122] Gen. et sp. nov Valid Sues & Schoch Late Triassic (Carnian) Doswell  United States
( Virginia)
A rhynchocephalian. Genus includes new species M. pitti.
Oculudentavis Gen. et sp. nov Disputed Xing et al. Late Cretaceous (Cenomanian) Burmese amber  Myanmar A diapsid of uncertain phylogenetic placement. Originally described as a member of Avialae[123] but subsequently argued to be a lizard.[124] Genus includes new species O. khaungraae. Its status as a validly named taxon is controversial because the scientific article it was named in was subsequently retracted.[125][126]
Oryctorhynchus[127] Gen. et sp. nov Valid Sues, Fitch & Whatley Late Triassic (Carnian? - Norian?) Wolfville  Canada
( Nova Scotia)
A rhynchosaur. Genus includes new species O. bairdi.
Raibliania[128] Gen. et sp. nov Valid Dalla Vecchia Late Triassic (Carnian) Calcare del Predil  Italy A member of the family Tanystropheidae. The type species is R. calligarisi.
Skybalonyx[129] Gen. et sp. nov Valid Jenkins et al. Late Triassic Chinle  United States
( Arizona)
A member of the family Drepanosauridae. Genus includes new species S. skapter.
Smilodonterpeton[130] Gen. et sp. nov In press Skinner, Whiteside & Benton Late Triassic (Rhaetian)  United Kingdom A procolophonid. Genus includes new species S. ruthinensis.
Tanystropheus hydroides[131] Sp. nov Valid Spiekman et al. Late Triassic Besano Italy-Switzerland border
Trilophosaurus phasmalophos[132] Sp. nov Valid Kligman et al. Late Triassic (Norian) Chinle  United States
( Arizona)

Vellbergia[133] Gen. et sp. nov Sobral, Simões & Schoch Middle Triassic (Ladinian) Erfurt  Germany A non-lepidosaurian lepidosauromorph. The type species is V. bartholomaei.
Youngetta[117] Gen. et comb. nov Valid Hamley, Cisneros & Damiani Early Triassic  China A procolophonid; a new genus for "Eumetabolodon" dongshengensis Li (1983).

Research

[edit]
  • A study on fracture planes (unossified regions in the middle of vertebral centra) in tail vertebrae of mesosaurs is published by MacDougall et al. (2020), who argue that mesosaurs were theoretically capable of tail autotomy, but probably did not utilize this ability.[134]
  • A study on patterns of tooth development and replacement in Belebey and Bolosaurus, indicating that bolosaurid teeth had thecodont implantation with deep roots, is published by Snyder et al. (2020).[135]
  • Revision of Pachypes-like footprints from the CisuralianGuadalupian of Europe and North America is published by Marchetti et al. (2020), who date the earliest known occurrence of Pachypes to the Artinskian, interpret the footprints belonging to the ichnospecies Pachypes ollieri as produced by nycteroleter pareiasauromorphs, and argue that the earliest occurrences of pareiasauromorph footprints precede the earliest occurrence of this group in the skeletal record by at least 10 million years.[136]
  • A study on the dental wear along the tooth rows of nearly one hundred jaws of Captorhinus aguti, indicating that this reptile preferred to feed using the right side of the jaw, is published by Reisz et al. (2020).[137]
  • Redescription of Cargninia enigmatica is published by Vivar et al. (2020).[138]
  • A study on the phylogenetic relationships and evolutionary history of sphenodontian reptiles is published by Simões, Caldwell & Pierce (2020).[139]
  • A study on the feeding mechanics and ecology of Clevosaurus hudsoni and C. cambrica, as indicated by their bite force, resistance of skull bones to bending and torsion, and the distribution of stresses in the jaws during biting, is published by Chambi-Trowell et al. (2020).[140]
  • A study on the anatomy and phylogenetic relationships of Colobops noviportensis is published by Scheyer et al. (2020), who reinterpret this taxon as a probable rhynchocephalian.[141]
  • A study on the morphology of teeth of Priosphenodon avelasi is published by LeBlanc et al. (2020).[142]
  • Partial skeleton of a small reptile, probably a juvenile specimen of Eusaurosphargis dalsassoi, is described from the Anisian Buchenstein Formation (northern Dolomites, Italy) by Renesto, Kustatscher & Gianolla (2020), who interpret this finding as possible evidence of that the lands emerged near the basins of the northern Dolomites, Besano Formation and Prosanto Formation had a similar reptilian fauna during the middle-late Anisian.[143]
  • Fossil tracks possibly produced by a monjurosuchid-like choristoderan are described from the Albian Daegu Formation (South Korea) by Lee, Kong & Jung (2020), who attempt to determine the trackmaker's locomotory posture on land, and name a new ichnotaxon Novapes ulsanensis.[144]
  • A study on the anatomy of the skull of Champsosaurus lindoei is published by Dudgeon et al. (2020), who evaluate the morphology of a putative neomorphic bone in the skull and its possible developmental and functional origins.[145]
  • A study on the internal anatomy of the skull of Champsosaurus lindoei and C. natator, and on their probable sensory abilities, is published by Dudgeon et al. (2020).[146]
  • A study on the Triassic fossil record and evolution of non-archosaurian archosauromorph reptiles in South America is published by Ezcurra et al. (2020), who also identify the first record of the family Proterosuchidae from South America (partial braincase from the Buena Vista Formation, Uruguay).[147]
  • New fossil material of tanystropheid and azendohsaurid archosauromorphs, providing new information on the diversity of Late Triassic archosauromorph reptiles in North America, is described from the Lamy Quarry south of the town of Lamy (Garita Creek Formation; New Mexico, United States) by Hégron et al. (2020).[148]
  • Redescription of the anatomy of the skeleton of Macrocnemus fuyuanensis is published by Scheyer et al. (2020).[149]
  • Description of the morphology of the skull of Macrocnemus bassanii is published by Miedema et al. (2020).[150]
  • A study on the morphology of the skull of Tanystropheus hydroides is published by Spiekman et al. (2020).[151]
  • A study on bone histology of three archosauromorph reptiles (Lagerpeton chanarensis, Tropidosuchus romeri and Chanaresuchus bonapartei) from the Triassic Chañares Formation (Argentina), evaluating its implications for the knowledge of the paleobiology of these taxa, is published by Marsà, Agnolín & Novas (2020).[152]

Reptiles in general

[edit]
  • A study on the dynamics of phenotypic and molecular evolution of reptiles during the early diversification of the major lineages of diapsid reptiles in the Permian and Triassic periods, and during the evolution of lepidosaurs from the Jurassic to the present, is published by Simões et al. (2020).[153]
  • A large, soft-shelled egg, most closely resembling eggs of extant lizards and snakes and possibly produced by a mosasaur, is described from the Upper Cretaceous Lopez de Bertodano Formation (Antarctica) by Legendre et al. (2020), who name a new ootaxon Antarcticoolithus bradyi.[154]
  • A study on the ecological diversity of Mesozoic marine tetrapods is published by Reeves et al. (2020).[155]
  • Diverse marine reptile faunas, including taxa previously known nearly exclusively from coeval strata of Europe (such as Temnodontosaurus, Stenopterygius, microcleidids, rhomaleosaurids and basal pliosaurids), are described from the Lower Jurassic Series (Pliensbachian and Toarcian stages) of Eastern Siberia (Russia) by Zverkov, Grigoriev & Danilov (2020).[156]
  • A study on the evolution of the archosauromorph ankle, aiming to test the hypothesis of fusion between the centrale and astragalus and the alternative hypothesis of a complete loss of the centrale, based on embryological and palaeontological data, is published by Blanco, Ezcurra & Bona (2020).[157]

References

[edit]
  1. ^ Thiago Schineider Fachini; Silvio Onary; Alessandro Palci; Michael S.Y. Lee; Mario Bronzati; Annie Schmaltz Hsiou (2020). "Cretaceous blindsnake from Brazil fills major gap in snake evolution". iScience. 23 (12): Article 101834. Bibcode:2020iSci...23j1834F. doi:10.1016/j.isci.2020.101834. PMC 7718481. PMID 33305189.
  2. ^ Jason J. Head (2020). "A South American snake lineage from the Eocene Greenhouse of North America and a reappraisal of the fossil record of "anilioid" snakes". Geobios. 66–67: 55–65. doi:10.1016/j.geobios.2020.09.005.
  3. ^ a b c Steven L. Wick; Thomas A. Shiller II (2020). "New taxa among a remarkably diverse assemblage of fossil squamates from the Aguja formation (lower Campanian) of west Texas". Cretaceous Research. 114: Article 104516. Bibcode:2020CrRes.11404516W. doi:10.1016/j.cretres.2020.104516. S2CID 219751062.
  4. ^ Andrej Čerňanský; Anthony Herrel; Job M. Kibii; Christopher V. Anderson; Renaud Boistel; Thomas Lehmann (2020). "The only complete articulated early Miocene chameleon skull (Rusinga Island, Kenya) suggests an African origin for Madagascar's endemic chameleons". Scientific Reports. 10 (1): Article number 109. Bibcode:2020NatSR..10..109C. doi:10.1038/s41598-019-57014-5. PMC 6954250. PMID 31924840.
  5. ^ Andrej Čerňanský; Elena V. Syromyatnikova; Ekaterina S. Kovalenko; Konstantin M. Podurets; Alexander A. Kaloyan (2020). "The key to understanding the European Miocene Chalcides (Squamata, Scincidae) comes from Asia: the lizards of the East Siberian Tagay locality (Baikal Lake) in Russia". The Anatomical Record. 303 (7): 1901–1934. doi:10.1002/ar.24289. PMID 31595688. S2CID 203983366.
  6. ^ Agustín Scanferla; Krister T. Smith (2020). "Exquisitely preserved fossil snakes of Messel: insight into the evolution, biogeography, habitat preferences and sensory ecology of early boas". Diversity. 12 (3): Article 100. doi:10.3390/d12030100. hdl:11336/145425.
  7. ^ V. R. Alifanov (2020). "A new lizard (Agamidae, Iguania) from the late Paleocene of south Mongolia". Paleontological Journal. 54 (4): 410–413. Bibcode:2020PalJ...54..410A. doi:10.1134/S0031030120040036. S2CID 221161861. Archived from the original on 2020-08-01. Retrieved 2020-06-13.
  8. ^ Catherine R. C. Strong; Michael W. Caldwell; Takuya Konishi; Alessandro Palci (2020). "A new species of longirostrine plioplatecarpine mosasaur (Squamata: Mosasauridae) from the Late Cretaceous of Morocco, with a re-evaluation of the problematic taxon 'Platecarpus' ptychodon". Journal of Systematic Palaeontology. 18 (21): 1769–1804. Bibcode:2020JSPal..18.1769S. doi:10.1080/14772019.2020.1818322. S2CID 224978215.
  9. ^ J. R. Lively (2020). "Redescription and phylogenetic assessment of 'Prognathodon' stadtmani: implications for Globidensini monophyly and character homology in Mosasaurinae". Journal of Vertebrate Paleontology. 40 (3): Article number e1784183. Bibcode:2020JVPal..40E4183L. doi:10.1080/02724634.2020.1784183.
  10. ^ Simon G. Scarpetta (2020). "Effects of phylogenetic uncertainty on fossil identification illustrated by a new and enigmatic Eocene iguanian". Scientific Reports. 10 (1): Article number 15734. Bibcode:2020NatSR..1015734S. doi:10.1038/s41598-020-72509-2. PMC 7519069. PMID 32978416.
  11. ^ Hussam Zaher; Krister T. Smith (2020). "Pythons in the Eocene of Europe reveal a much older divergence of the group in sympatry with boas". Biology Letters. 16 (12): Article ID 20200735. doi:10.1098/rsbl.2020.0735. PMC 7775975. PMID 33321065.
  12. ^ Jonathas Souza Bittencourt; Tiago Rodrigues Simões; Michael Wayne Caldwell; Max Cardoso Langer (2020). "Discovery of the oldest South American fossil lizard illustrates the cosmopolitanism of early South American squamates". Communications Biology. 3 (1): Article number 201. doi:10.1038/s42003-020-0926-0. PMC 7190622. PMID 32350412.
  13. ^ Enric Torres-Roig; Kieren J. Mitchell; Josep Antoni Alcover; Fernando Martínez-Freiría; Salvador Bailón; Holly Heiniger; Matthew Williams; Alan Cooper; Joan Pons; Pere Bover (2021). "Origin, extinction and ancient DNA of a new fossil insular viper: molecular clues of overseas immigration". Zoological Journal of the Linnean Society. 192 (1): 144–168. doi:10.1093/zoolinnean/zlaa094.
  14. ^ C. Henrik Woolley; Nathan D. Smith; Joseph J.W. Sertich (2020). "New fossil lizard specimens from a poorly-known squamate assemblage in the Upper Cretaceous (Campanian) San Juan Basin, New Mexico, USA". PeerJ. 8: e8846. doi:10.7717/peerj.8846. PMC 7169976. PMID 32337098.
  15. ^ Seung Choi; Miguel Moreno-Azanza; Zoltán Csiki-Sava; Edina Prondvai; Yuong-Nam Lee (2020). "Comparative crystallography suggests maniraptoran theropod affinities for latest Cretaceous European 'geckoid' eggshell" (PDF). Papers in Palaeontology. 6 (2): 265–292. Bibcode:2020PPal....6..265C. doi:10.1002/spp2.1294. S2CID 214537088.
  16. ^ Augé Marc Louis; Brizuela Santiago (2020). "Transient presence of a teiid lizard in the European Eocene suggests transatlantic dispersal and rapid extinction" (PDF). Palaeobiodiversity and Palaeoenvironments. 100 (3): 793–817. Bibcode:2020PdPe..100..793A. doi:10.1007/s12549-019-00414-2. S2CID 211478772.
  17. ^ Simon G. Scarpetta (2020). "Unusual lizard fossil from the Miocene of Nebraska and a minimum age for cnemidophorine teiids". Royal Society Open Science. 7 (8): Article ID 200317. Bibcode:2020RSOS....700317S. doi:10.1098/rsos.200317. PMC 7481707. PMID 32968509. S2CID 220962726.
  18. ^ Anthony J. Martin; Dorothy Stearns; Meredith J. Whitten; Melissa M. Hage; Michael Page; Arya Basu (2020). "First known trace fossil of a nesting iguana (Pleistocene), The Bahamas". PLOS ONE. 15 (12): e0242935. Bibcode:2020PLoSO..1542935M. doi:10.1371/journal.pone.0242935. PMC 7725343. PMID 33296401.
  19. ^ Jozef Klembara; Andrej Čerňanský (2020). "Revision of the cranial anatomy of Ophisaurus acuminatus Jörg, 1965 (Anguimorpha, Anguidae) from the late Miocene of Germany". Geodiversitas. 42 (28): 539–557. doi:10.5252/geodiversitas2020v42a28. S2CID 228097212.
  20. ^ Davit Vasilyan; Maia Bukhsianidze (2020). "The fossil record of the genus Varanus from the Southern Caucasus (Armenia, Georgia)". PeerJ. 8: e8322. doi:10.7717/peerj.8322. PMC 6942675. PMID 31915588.
  21. ^ Daniel Madzia; Andrea Cau (2020). "Estimating the evolutionary rates in mosasauroids and plesiosaurs: discussion of niche occupation in Late Cretaceous seas". PeerJ. 8: e8941. doi:10.7717/peerj.8941. PMC 7164395. PMID 32322442.
  22. ^ Dmitry V. Grigoriev; Alexander A. Grabovskiy (2020). "Arctic mosasaurs (Squamata, Mosasauridae) from the Upper Cretaceous of Russia". Cretaceous Research. 114: Article 104499. Bibcode:2020CrRes.11404499G. doi:10.1016/j.cretres.2020.104499. S2CID 219431991.
  23. ^ Dylan Bastiaans; Jeroen J.F. Kroll; Dirk Cornelissen; Anne S. Schulp; John W.M. Jagt (2020). "Cranial palaeopathologies in a Late Cretaceous mosasaur from the Netherlands". Cretaceous Research. 112: Article 104425. Bibcode:2020CrRes.11204425B. doi:10.1016/j.cretres.2020.104425.
  24. ^ Gerardo Álvarez–Herrera; Federico Agnolin; Fernando Novas (2020). "A rostral neurovascular system in the mosasaur Taniwhasaurus antarcticus". The Science of Nature. 107 (3): Article number 19. Bibcode:2020SciNa.107...19A. doi:10.1007/s00114-020-01677-y. hdl:11336/133328. PMID 32333118. S2CID 216111650.
  25. ^ Amelia R. Zietlow (2020). "Craniofacial ontogeny in Tylosaurinae". PeerJ. 8: e10145. doi:10.7717/peerj.10145. PMC 7583613. PMID 33150074. S2CID 226238229.
  26. ^ Georgios L. Georgalis; Letizia Del Favero; Massimo Delfino (2020). "Italy's largest snake: Redescription of Palaeophis oweni from the Eocene of Monte Duello, near Verona". Acta Palaeontologica Polonica. 65 (3): 523–533. doi:10.4202/app.00711.2019. hdl:2318/1759592.
  27. ^ Annelise Folie; Florias Mees; Thierry De Putter; Thierry Smith (2020). "Presence of the large aquatic snake Palaeophis africanus in the middle Eocene marine margin of the Congo Basin, Cabinda, Angola". Geobios. 66–67: 45–54. doi:10.1016/j.geobios.2020.11.002. S2CID 229411514.
  28. ^ Agustín Scanferla; Krister T. Smith (2020). "Additional anatomical information on the Eocene minute boas Messelophis variatus and Rieppelophis ermannorum (Messel Formation, Germany)". Vertebrate Zoology. 70 (4): 615–620. doi:10.26049/VZ70-4-2020-06.
  29. ^ Hussam Zaher; Annelise Folie; Ana B. Quadros; Rajendra S. Rana; Kishor Kumar; Kenneth D. Rose; Mohamed Fahmy; Thierry Smith (2020). "Additional vertebral material of Thaumastophis (Serpentes: Caenophidia) from the early Eocene of India provides new insights on the early diversification of colubroidean snakes". Geobios. 66–67: 35–43. doi:10.1016/j.geobios.2020.06.009. S2CID 225415393.
  30. ^ Jair Israel Barrientos Lara; Jesús Alvarado Ortega; Marta S.Fernández (2020). "Acuetzpalin carranzai gen et sp. nov. A new ophthalmosauridae (Ichthyosauria) from the Upper Jurassic of Durango, North Mexico". Journal of South American Earth Sciences. 98: Article 102456. Bibcode:2020JSAES..9802456B. doi:10.1016/j.jsames.2019.102456. S2CID 213102661.
  31. ^ Nicole Klein; Lars Schmitz; Tanja Wintrich; P. Martin Sander (2020). "A new cymbospondylid ichthyosaur (Ichthyosauria) from the Middle Triassic (Anisian) of the Augusta Mountains, Nevada, USA". Journal of Systematic Palaeontology. 18 (14): 1167–1191. Bibcode:2020JSPal..18.1167K. doi:10.1080/14772019.2020.1748132. S2CID 219078178.
  32. ^ Erin E. Maxwell; Dirley Cortés (2020). "A revision of the Early Jurassic ichthyosaur Hauffiopteryx (Reptilia: Ichthyosauria), and description of a new species from southwestern Germany". Palaeontologia Electronica. 23 (2): Article number 23(2):a31. doi:10.26879/937.
  33. ^ Nikolay G. Zverkov; Megan L. Jacobs (2020). "Revision of Nannopterygius (Ichthyosauria: Ophthalmosauridae): reappraisal of the 'inaccessible' holotype resolves a taxonomic tangle and reveals an obscure ophthalmosaurid lineage with a wide distribution". Zoological Journal of the Linnean Society. 191 (1): 228–275. doi:10.1093/zoolinnean/zlaa028.
  34. ^ Megan L. Jacobs; David M. Martill (2020). "A new ophthalmosaurid ichthyosaur from the Upper Jurassic (Early Tithonian) Kimmeridge Clay of Dorset, UK, with implications for Late Jurassic ichthyosaur diversity". PLOS ONE. 15 (12): e0241700. Bibcode:2020PLoSO..1541700J. doi:10.1371/journal.pone.0241700. PMC 7725355. PMID 33296370.
  35. ^ Yu Qiao; Masaya Iijima; Jun Liu (2020). "The largest hupehsuchian (Reptilia, Ichthyosauromorpha) from the Lower Triassic of South China indicates early establishment of high predation pressure after the Permo-Triassic mass extinction". Journal of Vertebrate Paleontology. 39 (5): e1719122. doi:10.1080/02724634.2019.1719122. S2CID 215756095.
  36. ^ Jian-dong Huang; Ryosuke Motani; Da-yong Jiang; Xin-xin Ren; Andrea Tintori; Olivier Rieppel; Min Zhou; Yuan-chao Hu; Rong Zhang (2020). "Repeated evolution of durophagy during ichthyosaur radiation after mass extinction indicated by hidden dentition". Scientific Reports. 10 (1): Article number 7798. Bibcode:2020NatSR..10.7798H. doi:10.1038/s41598-020-64854-z. PMC 7210957. PMID 32385319.
  37. ^ Rafel Matamales-Andreu; Oriol Oms; Àngel Galobart; Josep Fortuny (2020). "Middle–Upper Triassic marine vertebrates of Mallorca (Balearic Islands, western Mediterranean)". Historical Biology: An International Journal of Paleobiology. 33 (10): 2520–2533. doi:10.1080/08912963.2020.1810682. S2CID 225004747.
  38. ^ Kittichai Tongtherm; Yasunari Shigeta; Apsorn Sardsud; Katsuo Sashida; Sachiko Agematsu (2020). "Age of the Early Triassic ichthyopterygian Thaisaurus inferred from ammonoid biostratigraphy". Paleontological Research. 24 (4): 276–284. doi:10.2517/2019PR022. S2CID 222136795.
  39. ^ Benjamin C. Moon; Thomas L. Stubbs (2020). "Early high rates and disparity in the evolution of ichthyosaurs". Communications Biology. 3 (1): Article number 68. doi:10.1038/s42003-020-0779-6. PMC 7018711. PMID 32054967.
  40. ^ Judith M. Pardo-Pérez; Benjamin P. Kear; Erin E. Maxwell (2020). "Skeletal pathologies track body plan evolution in ichthyosaurs". Scientific Reports. 10 (1): Article number 4206. Bibcode:2020NatSR..10.4206P. doi:10.1038/s41598-020-61070-7. PMC 7060314. PMID 32144303.
  41. ^ Silvio Renesto; Cristiano Dal Sasso; Fabio Fogliazza; Cinzia Ragni (2020). "New findings reveal that the Middle Triassic ichthyosaur Mixosaurus cornalianus is the oldest amniote with a dorsal fin". Acta Palaeontologica Polonica. 65 (3): 511–522. doi:10.4202/app.00731.2020.
  42. ^ Da-Yong Jiang; Ryosuke Motani; Andrea Tintori; Olivier Rieppel; Cheng Ji; Min Zhou; Xue Wang; Hao Lu; Zhi-Guang Li (2020). "Evidence supporting predation of 4-m marine reptile by Triassic megapredator". iScience. 23 (9): Article 101347. Bibcode:2020iSci...23j1347J. doi:10.1016/j.isci.2020.101347. PMC 7520894. PMID 32822565.
  43. ^ Emily J. Swaby; Dean R. Lomax (2020). "A revision of Temnodontosaurus crassimanus (Reptilia: Ichthyosauria) from the Lower Jurassic (Toarcian) of Whitby, Yorkshire, UK" (PDF). Historical Biology: An International Journal of Paleobiology. 33 (11): 2715–2731. doi:10.1080/08912963.2020.1826469. S2CID 225116735.
  44. ^ Michael W. Maisch (2020). "The best-preserved skeleton of Suevoleviathan integer (Bronn, 1844) (Reptilia: Ichthyosauria) from the Lower Jurassic of south-western Germany, with a discussion of the genus". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 297 (2): 153–172. doi:10.1127/njgpa/2020/0918. S2CID 225493146.
  45. ^ Giovanni Serafini; Jacopo Amalfitano; Miriam Cobianchi; Beatrice Fornaciari; Erin E. Maxwell; Cesare Andrea Papazzoni; Guido Roghi; Luca Giusberti (2020). "Evidence of opportunistic feeding between ichthyosaurs and the oldest occurrence of the hexanchid shark Notidanodon from the Upper Jurassic of Northern Italy". Rivista Italiana di Paleontologia e Stratigrafia. 126 (3): 629–655. doi:10.13130/2039-4942/14078. S2CID 229243429.
  46. ^ Nikolay G. Zverkov; Dmitry V. Grigoriev (2020). "An unrevealed lineage of platypterygiines (Ichthyosauria) with peculiar forefin structure and semiglobal distribution in the mid-Cretaceous (Albian–Cenomanian)". Cretaceous Research. 115: Article 104550. Bibcode:2020CrRes.11504550Z. doi:10.1016/j.cretres.2020.104550. S2CID 225721312.
  47. ^ María Eurídice Páramo-Fonseca; Javier García Guerrero; Cristian David Benavides-Cabra; Santiago Padilla Bernal; Antonio José Castañeda-Gómez (2020). "A benchmark specimen of Muiscasaurus catheti from the upper Aptian of Villa de Leiva, Colombia: new anatomical features and phylogenetic implications". Cretaceous Research. 119: Article 104685. doi:10.1016/j.cretres.2020.104685. S2CID 228965354.
  48. ^ Qing-Hua Shang; Xiao-Chun Wu; Chun Li (2020). "A new Ladinian nothosauroid (Sauropterygia) from Fuyuan, Yunnan Province, China". Journal of Vertebrate Paleontology. 40 (3): e1789651. Bibcode:2020JVPal..40E9651S. doi:10.1080/02724634.2020.1789651. S2CID 227241106.
  49. ^ Valentin Fischer; Nikolay G. Zverkov; Maxim S. Arkhangelsky; Ilya M. Stenshin; Ivan V. Blagovetshensky; Gleb N. Uspensky (2020). "A new elasmosaurid plesiosaurian from the Early Cretaceous of Russia marks an early attempt at neck elongation". Zoological Journal of the Linnean Society. 192 (4): 1167–1194. doi:10.1093/zoolinnean/zlaa103. hdl:2268/251614. ISSN 0024-4082.
  50. ^ Aubrey Jane Roberts; Patrick S. Druckenmiller; Benoit Cordonnier; Lene L. Delsett; Jørn H. Hurum (2020). "A new plesiosaurian from the Jurassic–Cretaceous transitional interval of the Slottsmøya Member (Volgian), with insights into the cranial anatomy of cryptoclidids using computed tomography". PeerJ. 8: e8652. doi:10.7717/peerj.8652. PMC 7120097. PMID 32266112.
  51. ^ Rodrigo A. Otero; Sergio Soto-Acuña (2020). "Wunyelfia maulensis gen. et sp. nov., a new basal aristonectine (Plesiosauria, Elasmosauridae) from the Upper Cretaceous of central Chile". Cretaceous Research. 118: Article 104651. doi:10.1016/j.cretres.2020.104651. S2CID 224975253.
  52. ^ Michael W. Maisch (2020). "The evolution of the temporal region of placodonts (Diapsida: Placodontia) – a problematic issue of cranial osteology in fossil marine reptiles". Palaeodiversity. 13 (1): 57–68. doi:10.18476/pale.v13.a6.
  53. ^ Carlos De Miguel Chaves; Alejandro Serrano; Francisco Ortega; Adán Pérez-García (2020). "Braincase and endocranium of the Placodont Parahenodus atancensis de Miguel Chaves, Ortega & Pérez-García, 2018, a representative of the highly specialized clade Henodontidae". Comptes Rendus Palevol. 19 (10): 173–186. doi:10.5852/cr-palevol2020v19a10.
  54. ^ Qiang Li; Jun Liu (2020). "An Early Triassic sauropterygian and associated fauna from South China provide insights into Triassic ecosystem health". Communications Biology. 3 (1): Article number 63. doi:10.1038/s42003-020-0778-7. PMC 7012838. PMID 32047220.
  55. ^ Rodrigo A. Otero; Jhonatan Alarcón-Muñoz; Sergio Soto-Acuña; Jennyfer Rojas; Osvaldo Rojas; Héctor Ortíz (2020). "Cryptoclidid plesiosaurs (Sauropterygia, Plesiosauria) from the Upper Jurassic of the Atacama Desert". Journal of Vertebrate Paleontology. 40 (1): e1764573. Bibcode:2020JVPal..40E4573O. doi:10.1080/02724634.2020.1764573. S2CID 221751737.
  56. ^ Jose P. O'Gorman (2020). "Elasmosaurid phylogeny and paleobiogeography, with a reappraisal of Aphrosaurus furlongi from the Maastrichtian of the Moreno Formation". Journal of Vertebrate Paleontology. 39 (5): e1692025. doi:10.1080/02724634.2019.1692025. S2CID 215756238.
  57. ^ José Patricio O'Gorman; Paula Bona; Martín de los Reyes; Maria Eugenia Raffi; Marcelo Reguero (2020). "A non-aristonectine plesiosaur from Antarctica reveals new data on the mandibular symphysis of elasmosaurids". Alcheringa: An Australasian Journal of Palaeontology. 44 (4): 565–576. Bibcode:2020Alch...44..565O. doi:10.1080/03115518.2020.1824261. S2CID 229399482.
  58. ^ Nikolay G. Zverkov; Evgeny M. Pervushov (2020). "A gigantic pliosaurid from the Cenomanian (Upper Cretaceous) of the Volga Region, Russia". Cretaceous Research. 110: Article 104419. Bibcode:2020CrRes.11004419Z. doi:10.1016/j.cretres.2020.104419. S2CID 214487254.
  59. ^ Valentin Fischer; Jamie A. MacLaren; Laura C. Soul; Rebecca F. Bennion; Patrick S. Druckenmiller; Roger B. J. Benson (2020). "The macroevolutionary landscape of short-necked plesiosaurians". Scientific Reports. 10 (1): Article number 16434. doi:10.1038/s41598-020-73413-5. PMC 7532190. PMID 33009498.
  60. ^ A. Pérez-García (2020). "A new bothremydid turtle (Pleurodira) from the Upper Cretaceous (Cenomanian) of Madagascar". Cretaceous Research. 118: Article 104645. doi:10.1016/j.cretres.2020.104645. S2CID 225033660.
  61. ^ Adán Pérez-García; Evangelos Vlachos; Xabier Murelaga (2020). "A large testudinid with African affinities in the post-Messinian (lower Pliocene) record of south-eastern Spain". Palaeontology. 63 (3): 497–512. doi:10.1111/pala.12468. S2CID 214232312.
  62. ^ Gerardo Carbot-Chanona; Gustavo Rivera-Velázquez; Eduardo Jiménez-Hidalgo; Víctor Hugo Reynoso (2020). "The first Pan-Carettochelys turtle in the Neogene of the American continent and its paleobiogeographical relevance". Journal of South American Earth Sciences. 104: Article 102925. Bibcode:2020JSAES.10402925C. doi:10.1016/j.jsames.2020.102925. S2CID 224976641.
  63. ^ Guilherme Hermanson; Fabiano V. Iori; Serjoscha W. Evers; Max C. Langer; Gabriel S. Ferreira (2020). "A small podocnemidoid (Pleurodira, Pelomedusoides) from the Late Cretaceous of Brazil, and the innervation and carotid circulation of side-necked turtles". Papers in Palaeontology. 6 (2): 329–347. doi:10.1002/spp2.1300.
  64. ^ A. Pérez García; E. Espílez; L. Mampel; L. Alcalá (2020). "A new basal turtle represented by the two most complete skeletons of Helochelydridae in Europe". Cretaceous Research. 107: Article 104291. Bibcode:2020CrRes.10704291P. doi:10.1016/j.cretres.2019.104291. S2CID 210279023.
  65. ^ Adán Pérez-García; Thierry Smith (2020). "Systematics and diversity of the giant soft-shelled turtles (Cryptodira, Trionychidae) from the earliest Eocene of Belgium". Geobios. 66–67: 15–34. doi:10.1016/j.geobios.2020.07.006. S2CID 229426614.
  66. ^ a b Richard Franz; Nancy A. Albury; David W. Steadman (2020). "Extinct tortoises from the Turks and Caicos Islands" (PDF). Bulletin of the Florida Museum of Natural History. 58 (1): 1–38.
  67. ^ Oleg Redkozubov; Elena Syromyatnikova; Anna Gnetneva; Igor Danilov (2020). "First reliable records of the genus Chersine (Testudines: Testudinidae) from the Pliocene of Moldova". Historical Biology: An International Journal of Paleobiology. 33 (11): 3046–3055. doi:10.1080/08912963.2020.1846531. S2CID 229407378.
  68. ^ Adán Pérez-García (2020). "A European Cenozoic 'Macrobaenid:' New Data about the Paleocene Arrival of Several Turtle Lineages to Europe". Journal of Vertebrate Paleontology. 40 (4): e1795874. Bibcode:2020JVPal..40E5874P. doi:10.1080/02724634.2020.1795874. S2CID 225151817.
  69. ^ Diogo Lins Batista; Ismar de Souza Carvalho; Marcelo S. de la Fuente (2020). "A new Cretaceous (Pleurodira:Pelomedusoides) from the Lower Cretaceous of Parnaíba Basin, Brazil". Journal of South American Earth Sciences. 105: Article 102872. doi:10.1016/j.jsames.2020.102872. S2CID 224959263.
  70. ^ Walter G. Joyce; Saswati Bandyopadhyay (2020). "A revision of the pelomedusoid turtle Jainemys pisdurensis from the Late Cretaceous (Maastrichtian) Lameta Formation of India". PeerJ. 8: e9330. doi:10.7717/peerj.9330. PMC 7316078. PMID 32607283.
  71. ^ Walter G. Joyce; Yann Rollot; Richard L. Cifelli (2020). "A new species of baenid turtle from the Early Cretaceous Lakota Formation of South Dakota". Fossil Record. 23 (1): 1–13. Bibcode:2020FossR..23....1J. doi:10.5194/fr-23-1-2020.
  72. ^ Adán Pérez García (2020). "Surviving the Cretaceous-Paleogene mass extinction event: A terrestrial stem turtle in the Cenozoic of Laurasia". Scientific Reports. 10 (1): Article number 1489. Bibcode:2020NatSR..10.1489P. doi:10.1038/s41598-020-58511-8. PMC 6992736. PMID 32001765.
  73. ^ Rafaella C. Garbin; Saswati Bandyopadhyay; Walter G. Joyce (2020). "A taxonomic revision of geoemydid turtles from Siwalik-age of India and Pakistan". European Journal of Taxonomy (652): 1–67. doi:10.5852/ejt.2020.652.
  74. ^ Edwin-Alberto Cadena; Andrés Vanegas; Carlos Jaramillo; John M. Cottle; Thomas A. Johnson (2020). "A new Miocene turtle from Colombia sheds light on the evolutionary history of the extant genus Mesoclemmys Gray, 1873". Journal of Vertebrate Paleontology. 39 (5): e1716777. doi:10.1080/02724634.2019.1716777. S2CID 214520220.
  75. ^ Hans-Volker Karl (2020). "Die Wirbeltiere aus dem Niederhessischen Braunkohlenrevier um Borken, unter besonderer Berücksichtigung der Schildkröten- und Krokodilreste mit taxonomischen Notizen zu Geoemyda saxonica Hummel, 1935 (Hessen, Deutschland)". Mainzer Naturwissenschaftliches Archiv. 57: 101–132.
  76. ^ Oliver A. López-Conde; Adán Pérez-García; María L. Chavarría-Arellano; Jesús Alvarado-Ortega (2020). "A new bothremydid turtle (Pleurodira) from the Olmos Formation (upper Campanian) of Coahuila, Mexico". Cretaceous Research. 119: Article 104710. doi:10.1016/j.cretres.2020.104710. S2CID 229448487.
  77. ^ Ignacio J. Maniel; Marcelo S. de la Fuente; Sebastian Apesteguía; Joaquin Pérez Mayoral; Maria L. Sanchez; Gonzalo D. Veiga; Ian Smales (2020). "Cranial and postcranial remains of a new species of Prochelidella (Testudines: Pleurodira: Chelidae) from 'La Buitrera' (Cenomanian of Patagonia, Argentina), with comments on the monophyly of this extinct chelid genus from southern Gondwana". Journal of Systematic Palaeontology. 18 (12): 1033–1055. Bibcode:2020JSPal..18.1033M. doi:10.1080/14772019.2020.1721579. S2CID 214500365.
  78. ^ Lapparent de Broin; Laurent Chirio; Roger Bour (2020). "The oldest erymnochelyine turtle skull, Ragechelus sahelica n. gen., n. sp., from the Iullemmeden basin, Upper Cretaceous of Africa, and the associated fauna in its geographical and geological context". Geodiversitas. 42 (25): 455–484. doi:10.5252/geodiversitas2020v42a25. S2CID 226238494.
  79. ^ Jérémy Anquetin; Christian Püntener (2020). "A new species of the large-headed coastal marine turtle Solnhofia (Testudinata, Thalassochelydia) from the Late Jurassic of NW Switzerland". PeerJ. 8: e9931. doi:10.7717/peerj.9931. PMC 7666818. PMID 33240584.
  80. ^ Géraldine Garcia; Aurélie Pinton; Xavier Valentin; Dimitris S. Kostopoulos; Gildas Merceron; Louis de Bonis; George D. Koufos (2020). "The earliest known crown-Testudo tortoise from the late Miocene (Vallesian, 9 Ma) of Greece". PLOS ONE. 15 (4): e0224783. Bibcode:2020PLoSO..1524783G. doi:10.1371/journal.pone.0224783. PMC 7141670. PMID 32267839.
  81. ^ Hans Volker Karl, Ulrich Staesche, Amtyaz Safi New findings of neogene tortoises Titanochelon kayadibiensis sp. nov. and Protestudo bessarabica (Riabinin, 1918) (Testudinidae) from the Miocene of western Turkey, with a review of fossil turtles of Turkey SPC Journal of Environmental Sciences, 3 (1) (2021) 1-9
  82. ^ Juliana Sterli; Ricardo N. Martínez; Ignacio A. Cerda; Cecilia Apaldetti (2020). "Appearances can be deceptive: bizarre shell microanatomy and histology in a new Triassic turtle (Testudinata) from Argentina at the dawn of turtles". Papers in Palaeontology. 7 (2): 1097–1132. doi:10.1002/spp2.1334. S2CID 225515560.
  83. ^ Carolina Oriozabala; Juliana Sterli; Marcelo S. De La Fuente (2020). "New species of the long-necked chelid Yaminuechelys from the Upper Cretaceous (Campanian–Maastrichtian) of Chubut, Argentina". Cretaceous Research. 106: Article 104197. Bibcode:2020CrRes.10604197O. doi:10.1016/j.cretres.2019.104197. S2CID 201336536.
  84. ^ Gabriel S. Ferreira; Stephan Lautenschlager; Serjoscha W. Evers; Cathrin Pfaff; Jürgen Kriwet; Irena Raselli; Ingmar Werneburg (2020). "Feeding biomechanics suggests progressive correlation of skull architecture and neck evolution in turtles". Scientific Reports. 10 (1): Article number 5505. Bibcode:2020NatSR..10.5505F. doi:10.1038/s41598-020-62179-5. PMC 7099039. PMID 32218478.
  85. ^ Laura Dziomber; Walter G. Joyce; Christian Foth (2020). "The ecomorphology of the shell of extant turtles and its applications for fossil turtles". PeerJ. 8: e10490. doi:10.7717/peerj.10490. PMC 7761203. PMID 33391873.
  86. ^ Marcelo S. de la Fuente; Juliana Sterli; Verónica Krapovickas (2020). "Triassic turtles from Pangea: The legacy from South America". Journal of South American Earth Sciences. 105: Article 102910. doi:10.1016/j.jsames.2020.102910. S2CID 224891876.
  87. ^ Terri J. Cleary; Roger B. J. Benson; Patricia A. Holroyd; Paul M. Barrett (2020). "Tracing the patterns of non-marine turtle richness from the Triassic to the Palaeogene: from origin to global spread". Palaeontology. 63 (5): 753–774. doi:10.1111/pala.12486.
  88. ^ Tomasz Szczygielski (2020). "Obscure by name: solving the enigma of Chelytherium obscurum, the first described Triassic turtle". Zoological Journal of the Linnean Society. 192 (4): 1111–1122. doi:10.1093/zoolinnean/zlaa139.
  89. ^ Walter G. Joyce; Saswati Bandyopadhyay (2020). "A reevaluation of the basal turtle Indochelys spatulata from the Early–Middle Jurassic (Toarcian–Aalenian) of India, with descriptions of new material". PeerJ. 8: e8542. doi:10.7717/peerj.8542. PMC 7020818. PMID 32095362.
  90. ^ Marcos Martín-Jiménez; Vlad Codrea; Adán Pérez-García (2020). "Neuroanatomy of the European uppermost Cretaceous stem turtle Kallokibotion bajazidi". Cretaceous Research. 120: Article 104720. doi:10.1016/j.cretres.2020.104720. S2CID 229415767.
  91. ^ Edwin-Alberto Cadena (2020). "Valanginian occurrence of Pelomedusoides turtles in northern South America: revision of this hypothesis based on a new fossil remain". PeerJ. 8: e9810. doi:10.7717/peerj.9810. PMC 7450993. PMID 32904119.
  92. ^ Saulo Limaverde; Rodrigo Vargas Pêgas; Rafael Damasceno; Chiara Villa; Gustavo R. Oliveira; Niels Bonde; Maria E.C. Leal (2020). "Interpreting character variation in turtles: Araripemys barretoi (Pleurodira: Pelomedusoides) from the Araripe Basin, Early Cretaceous of Northeastern Brazil". PeerJ. 8: e9840. doi:10.7717/peerj.9840. PMC 7531347. PMID 33062413.
  93. ^ Mariana Valéria de Araújo Sena; Renan Alfredo Machado Bantim; Antônio Álamo Feitosa Saraiva; Juliana Manso Sayão; Gustavo Ribeiro Oliveira (2020). "Osteohistology and microanatomy of a new specimen of Cearachelys placidoi (Testudines: Pleurodira) a side-necked turtle from the Lower Cretaceous of Brazil". The Anatomical Record. 304 (6): 1294–1304. doi:10.1002/ar.24556. ISSN 1932-8486. PMID 33103362. S2CID 225073363.
  94. ^ Michael D. Cherney; Jeffrey A. Wilson Mantilla; Iyad Zalmout; Mohammed Sameh M. Antar; Philip D. Gingerich (2020). "New specimens of the Late Eocene turtle Cordichelys (Pleurodira: Podocnemididae) from Wadi Al Hitan and Qasr El-Sagha in the Fayum Province of Egypt". Contributions from the Museum of Paleontology, University of Michigan. 33 (2): 29–64. hdl:2027.42/163364.
  95. ^ E.-A. Cadena; T. M. Scheyer; J. D. Carrillo-Briceño; R. Sánchez; O. A Aguilera-Socorro; A. Vanegas; M. Pardo; D. M. Hansen; M. R. Sánchez-Villagra (2020). "The anatomy, paleobiology, and evolutionary relationships of the largest extinct side-necked turtle". Science Advances. 6 (7): eaay4593. Bibcode:2020SciA....6.4593C. doi:10.1126/sciadv.aay4593. PMC 7015691. PMID 32095528.
  96. ^ Walter G. Joyce; Yann Rollot (2020). "An alternative interpretation of Peltochelys duchastelii as a paracryptodire". Fossil Record. 23 (1): 83–93. Bibcode:2020FossR..23...83J. doi:10.5194/fr-23-83-2020.
  97. ^ Serjoscha W. Evers; Yann Rollot; Walter G. Joyce (2020). "Cranial osteology of the Early Cretaceous turtle Pleurosternon bullockii (Paracryptodira: Pleurosternidae)". PeerJ. 8: e9454. doi:10.7717/peerj.9454. PMC 7333654. PMID 32655997.
  98. ^ Serjoscha W. Evers; Walter G. Joyce (2020). "A re-description of Sandownia harrisi (Testudinata: Sandownidae) from the Aptian of the Isle of Wight based on computed tomography scans". Royal Society Open Science. 7 (2): Article ID 191936. Bibcode:2020RSOS....791936E. doi:10.1098/rsos.191936. PMC 7062094. PMID 32257345.
  99. ^ Brent Adrian; Patricia A. Holroyd; J. Howard Hutchison; KE Beth Townsend (2020). "Additional records and stratigraphic distribution of the middle Eocene carettochelyid turtle Anosteira pulchra from the Uinta Formation of Utah, North America". PeerJ. 8: e9775. doi:10.7717/peerj.9775. PMC 7451016. PMID 32904103.
  100. ^ Evangelos Vlachos (2020). "The turtles from 'Gilmore's slab': evolution and diversity of the extinct turtle Echmatemys (Testudines: Testudinoidea: Geoemydidae) from the central United States". Journal of Systematic Palaeontology. 18 (14): 1193–1216. Bibcode:2020JSPal..18.1193V. doi:10.1080/14772019.2020.1754938. S2CID 219056552.
  101. ^ Walter G. Joyce; Julien Claude (2020). "An alternative interpretation of the Paleogene turtle Cardichelyon rogerwoodi as a hinged kinosternoid". Journal of Paleontology. 94 (3): 557–567. Bibcode:2020JPal...94..557J. doi:10.1017/jpa.2019.92. S2CID 210976208.
  102. ^ Bailey R. Fallon; Robert W. Boessenecker (2020). "Multispecies leatherback turtle assemblage from the Oligocene Chandler Bridge and Ashley formations of South Carolina, USA". Acta Palaeontologica Polonica. 65 (4): 763–776. doi:10.4202/app.00740.2020.
  103. ^ Hans-Dieter Sues; Rainer R. Schoch; Gabriela Sobral; Randall B. Irmis (2020). "A new archosauriform reptile with distinctive teeth from the Middle Triassic (Ladinian) of Germany". Journal of Vertebrate Paleontology. 40 (1): e1764968. Bibcode:2020JVPal..40E4968S. doi:10.1080/02724634.2020.1764968. S2CID 221749201.
  104. ^ Brenen M. Wynd; Sterling J. Nesbitt; Michelle R. Stocker; Andrew B. Heckert (2020). "A detailed description of Rugarhynchos sixmilensis, gen. et comb. nov. (Archosauriformes, Proterochampsia), and cranial convergence in snout elongation across stem and crown archosaurs". Journal of Vertebrate Paleontology. 39 (6): e1748042. doi:10.1080/02724634.2019.1748042. S2CID 219917329.
  105. ^ Fabio Massimo Petti; Heinz Furrer; Enrico Collo; Edoardo Martinetto; Massimo Bernardi; Massimo Delfino; Marco Romano; Michele Piazza (2020). "Archosauriform footprints in the Lower Triassic of Western Alps and their role in understanding the effects of the Permian-Triassic hyperthermal". PeerJ. 8: e10522. doi:10.7717/peerj.10522. PMC 7751423. PMID 33384899.
  106. ^ Susannah C. R. Maidment; Andrey G. Sennikov; Martín D. Ezcurra; Emma M. Dunne; David J. Gower; Brandon P. Hedrick; Luke E. Meade; Thomas J. Raven; Dmitriy I. Paschchenko; Richard J. Butler (2020). "The postcranial skeleton of the erythrosuchid archosauriform Garjainia prima from the Early Triassic of European Russia". Royal Society Open Science. 7 (12): Article ID: 201089. Bibcode:2020RSOS....701089M. doi:10.1098/rsos.201089. PMC 7813270. PMID 33489266. S2CID 227240694.
  107. ^ M. Jimena Trotteyn; Martín D. Ezcurra (2020). "Redescription of the holotype of Chanaresuchus bonapartei Romer, 1971 (Archosauriformes: Proterochampsidae) from the Upper Triassic rocks of the Chañares Formation of north-western Argentina". Journal of Systematic Palaeontology. 18 (17): 1415–1443. Bibcode:2020JSPal..18.1415T. doi:10.1080/14772019.2020.1768167. S2CID 221058509.
  108. ^ Roland B. Sookias; David Dilkes; Gabriela Sobral; Roger M. H. Smith; Frederik P. Wolvaardt; Andrea B. Arcucci; Bhart-Anjan S. Bhullar; Ingmar Werneburg (2020). "The craniomandibular anatomy of the early archosauriform Euparkeria capensis and the dawn of the archosaur skull". Royal Society Open Science. 7 (7): Article ID 200116. Bibcode:2020RSOS....700116S. doi:10.1098/rsos.200116. PMC 7428278. PMID 32874620. S2CID 220835273.
  109. ^ Oliver E. Demuth; Emily J. Rayfield; John R. Hutchinson (2020). "3D hindlimb joint mobility of the stem-archosaur Euparkeria capensis with implications for postural evolution within Archosauria". Scientific Reports. 10 (1): Article number 15357. Bibcode:2020NatSR..1015357D. doi:10.1038/s41598-020-70175-y. PMC 7506000. PMID 32958770.
  110. ^ Paul M. Barrett; Lara Sciscio; Pia A. Viglietti; Timothy J. Broderick; Celina A. Suarez; Glenn R. Sharman; Andrew S. Jones; Darlington Munyikwa; Steve F. Edwards; Kimberley E.J. Chapelle; Kathleen N. Dollman; Michel Zondo; Jonah N. Choiniere (2020). "The age of the Tashinga Formation (Karoo Supergroup) in the Mid-Zambezi Basin, Zimbabwe and the first phytosaur from sub-Saharan Africa" (PDF). Gondwana Research. 81: 445–460. doi:10.1016/j.gr.2019.12.008. S2CID 213848788.
  111. ^ Debajit Datta; Debarati Mukherjee; Sanghamitra Ray (2020). "Taphonomic signatures of a new Upper Triassic phytosaur (Diapsida, Archosauria) bonebed from India: aggregation of a juvenile-dominated paleocommunity". Journal of Vertebrate Paleontology. 39 (6): e1726361. doi:10.1080/02724634.2019.1726361. S2CID 219087095.
  112. ^ Debajit Datta; Kanishak Sharma; Sanghamitra Ray (2020). "Cranial evolution of the Late Triassic phytosaurs (Diapsida, Archosauria): preliminary observations from landmark-based morphometric analysis". Historical Biology: An International Journal of Paleobiology. 33 (11): 2683–2705. doi:10.1080/08912963.2020.1822831. S2CID 224916570.
  113. ^ Jordan Bestwick; Andrew S. Jones; Mark A. Purnell; Richard J. Butler (2020). "Dietary constraints of phytosaurian reptiles revealed by dental microwear textural analysis". Palaeontology. 64 (1): 119–136. doi:10.1111/pala.12515.
  114. ^ Arjan Mann; Emily J. McDaniel; Emily R. McColville; Hillary C. Maddin (2019). "Carbonodraco lundi gen et sp. nov., the oldest parareptile, from Linton, Ohio, and new insights into the early radiation of reptiles". Royal Society Open Science. 6 (11): Article ID 191191. Bibcode:2019RSOS....691191M. doi:10.1098/rsos.191191. PMC 6894558. PMID 31827854.
  115. ^ Arjan Mann; Emily J. McDaniel; Emily R. McColville; Hillary C. Maddin (2020). "Correction to "Carbonodraco lundi gen et sp. nov., the oldest parareptile, from Linton, Ohio, and new insights into the early radiation of reptiles"". Royal Society Open Science. 7 (1): Article ID 192198. Bibcode:2020RSOS....792198M. doi:10.1098/rsos.192198. PMC 7029946. PMID 32180991.
  116. ^ Tiane M. De-Oliveira; Felipe L. Pinheiro; Átila Augusto Stock Da-Rosa; Sérgio Dias-Da-Silva; Leonardo Kerber (2020). "A new archosauromorph from South America provides insights on the early diversification of tanystropheids". PLOS ONE. 15 (4): e0230890. Bibcode:2020PLoSO..1530890D. doi:10.1371/journal.pone.0230890. PMC 7141609. PMID 32267850.
  117. ^ a b Tim Hamley; Juan C. Cisneros; Ross Damiani (2020). "A procolophonid reptile from the Lower Triassic of Australia". Zoological Journal of the Linnean Society. 192 (2): 554–609. doi:10.1093/zoolinnean/zlaa056.
  118. ^ Iacopo Cavicchini; Marta Zaher; Michael J. Benton (2020). "An Enigmatic Neodiapsid Reptile from the Middle Triassic of England". Journal of Vertebrate Paleontology. 40 (3): e1781143. Bibcode:2020JVPal..40E1143C. doi:10.1080/02724634.2020.1781143. S2CID 222186694.
  119. ^ Patrick S. Druckenmiller; Neil P. Kelley; Eric T. Metz; James Baichtal (2020). "An articulated Late Triassic (Norian) thalattosauroid from Alaska and ecomorphology and extinction of Thalattosauria". Scientific Reports. 10 (1): Article number 1746. Bibcode:2020NatSR..10.1746D. doi:10.1038/s41598-020-57939-2. PMC 7000825. PMID 32019943.
  120. ^ Liping Dong; Ryoko Matsumoto; Nao Kusuhashi; Yuanqing Wang; Yuan Wang; Susan E. Evans (2020). "A new choristodere (Reptilia: Choristodera) from an Aptian–Albian coal deposit in China". Journal of Systematic Palaeontology. 18 (15): 1223–1242. Bibcode:2020JSPal..18.1223D. doi:10.1080/14772019.2020.1749147. S2CID 219047160.
  121. ^ Paulo R. Romo de Vivar; Agustín G. Martinelli; Annie Schmaltz Hsiou; Marina Bento Soares (2020). "A new rhynchocephalian from the Late Triassic of southern Brazil enhances eusphenodontian diversity". Journal of Systematic Palaeontology. 18 (13): 1103–1126. Bibcode:2020JSPal..18.1103R. doi:10.1080/14772019.2020.1732488. S2CID 216226211.
  122. ^ Hans-Dieter Sues; Rainer R. Schoch (2020). "A new early-diverging sphenodontian (Lepidosauria, Rhynchocephalia) from the Upper Triassic of Virginia, U.S.A.". Journal of Paleontology. 95 (2): 344–350. doi:10.1017/jpa.2020.87. S2CID 228808997.
  123. ^ Lida Xing; Jingmai K. O'Connor; Lars Schmitz; Luis M. Chiappe; Ryan C. McKellar; Qiru Yi; Gang Li (2020). "Hummingbird-sized dinosaur from the Cretaceous period of Myanmar". Nature. 579 (7798): 245–249. Bibcode:2020Natur.579..245X. doi:10.1038/s41586-020-2068-4. PMID 32161388. S2CID 212670113. (Retracted, see doi:10.1038/s41586-020-2553-9, PMID 32699407,  Retraction Watch)
  124. ^ Zhi-Heng Li; Wei Wang; Han Hu; Ming Wang; HongYu Yi; Jing Lu (2020). "Reanalysis of Oculudentavis shows it is a lizard". Vertebrata PalAsiatica. 59 (2): 95–105. doi:10.19615/j.cnki.1000-3118.201020.
  125. ^ Alain Dubois (2020). "Nomenclatural consequences of the Oculudentavis khaungraae case, with comments on the practice of 'retraction' of scientific publications". Zoosystema. 42 (23): 475–482. doi:10.5252/zoosystema2020v42a23. S2CID 225246304.
  126. ^ Evangelos Vlachos (2020). "A response to Dubois (2020; Zoosystema 42 (23): 475-482)". Zoosystema. 42 (25): 515–517. doi:10.5252/zoosystema2020v42a25. S2CID 222315217.
  127. ^ Hans-Dieter Sues; Adam J. Fitch; Robin L. Whatley (2020). "A new rhynchosaur (Reptilia, Archosauromorpha) from the Upper Triassic of eastern North America". Journal of Vertebrate Paleontology. 40 (2): e1771568. Bibcode:2020JVPal..40E1568S. doi:10.1080/02724634.2020.1771568. S2CID 222211622.
  128. ^ Fabio Marco Dalla Vecchia (2020). "Raibliania calligarisi gen. n., sp. n., a new tanystropheid (Diapsida, Tanystropheidae) from the Upper Triassic (Carnian) of northeastern Italy". Rivista Italiana di Paleontologia e Stratigrafia. 126 (1): 197–222. doi:10.13130/2039-4942/13041.
  129. ^ Jenkins, Xavier A.; Pritchard, Adam C.; Marsh, Adam D.; Kligman, Ben T.; Sidor, Christian A.; Reed, Kaye E. (2020). "Using manual ungual morphology to predict substrate use in the Drepanosauromorpha and the description of a new species". Journal of Vertebrate Paleontology. 40 (5): e1810058. Bibcode:2020JVPal..40E0058J. doi:10.1080/02724634.2020.1810058.
  130. ^ Matthew Skinner; David I. Whiteside; Michael J. Benton (2020). "Late Triassic island dwarfs? Terrestrial tetrapods of the Ruthin fissure (South Wales, UK) including a new genus of procolophonid". Proceedings of the Geologists' Association. 131 (5): 535–561. Bibcode:2020PrGA..131..535S. doi:10.1016/j.pgeola.2020.04.005. S2CID 221878712.
  131. ^ Stephan N.F. Spiekman; James M. Neenan; Nicholas C. Fraser; Vincent Fernandez; Olivier Rieppel; Stefania Nosotti; Torsten M. Scheyer (2020). "Aquatic habits and niche partitioning in the extraordinarily long-necked Triassic reptile Tanystropheus". Current Biology. 30 (19): 3889–3895.e2. doi:10.1016/j.cub.2020.07.025. hdl:10141/622898. PMID 32763168. S2CID 221012988.
  132. ^ Ben T. Kligman; Adam D. Marsh; Sterling J. Nesbitt; William G. Parker; Michelle R. Stocker (2020). "New trilophosaurid species demonstrates a decline in allokotosaur diversity across the Adamanian-Revueltian boundary in the Late Triassic of western North America". Palaeodiversity. 13 (1): 25–37. doi:10.18476/pale.v13.a3.
  133. ^ Gabriela Sobral; Tiago R. Simões; Rainer R. Schoch (2020). "A tiny new Middle Triassic stem-lepidosauromorph from Germany: implications for the early evolution of lepidosauromorphs and the Vellberg fauna". Scientific Reports. 10 (1): Article number 2273. Bibcode:2020NatSR..10.2273S. doi:10.1038/s41598-020-58883-x. PMC 7033234. PMID 32080209.
  134. ^ Mark J. MacDougall; Antoine Verrière; Tanja Wintrich; Aaron R. H. LeBlanc; Vincent Fernandez; Jörg Fröbisch (2020). "Conflicting evidence for the use of caudal autotomy in mesosaurs". Scientific Reports. 10 (1): Article number 7184. Bibcode:2020NatSR..10.7184M. doi:10.1038/s41598-020-63625-0. PMC 7189235. PMID 32346053.
  135. ^ Adam J. Snyder; Aaron R.H. LeBlanc; Chen Jun; Joseph J. Bevitt; Robert R. Reisz (2020). "Thecodont tooth attachment and replacement in bolosaurid parareptiles". PeerJ. 8: e9168. doi:10.7717/peerj.9168. PMC 7229766. PMID 32440377.
  136. ^ Lorenzo Marchetti; Sebastian Voigt; Eudald Mujal; Spencer G. Lucas; Heitor Francischini; Josep Fortuny; Vincent L. Santucci (2020). "Extending the footprint record of Pareiasauromorpha to the Cisuralian: earlier appearance and wider palaeobiogeography of the group". Papers in Palaeontology. 7 (3): 1297–1319. doi:10.1002/spp2.1342. S2CID 229416421.
  137. ^ Robert R. Reisz; Mark J. MacDougall; Aaron R.H. LeBlanc; Diane Scott; Ramon S. Nagesan (2020). "Lateralized feeding behavior in a Paleozoic reptile". Current Biology. 30 (12): 2374–2378.e4. doi:10.1016/j.cub.2020.04.026. PMID 32413302. S2CID 218627600.
  138. ^ Paulo R. Romo De Vivar; Agustín G. Martinelli; Pedro Henrique M. Fonseca; Marina Bento Soares (2020). "To be or not to be: the hidden side of Cargninia enigmatica and other puzzling remains of Lepidosauromorpha from the Upper Triassic of Brazil". Journal of Vertebrate Paleontology. 40 (4): e1828438. Bibcode:2020JVPal..40E8438R. doi:10.1080/02724634.2020.1828438. S2CID 227249876.
  139. ^ Tiago R. Simões; Michael W. Caldwell; Stephanie E. Pierce (2020). "Sphenodontian phylogeny and the impact of model choice in Bayesian morphological clock estimates of divergence times and evolutionary rates". BMC Biology. 18 (1): Article number 191. doi:10.1186/s12915-020-00901-5. PMC 7720557. PMID 33287835.
  140. ^ Sofia A. V. Chambi-Trowell; David I. Whiteside; Michael J. Benton; Emily J. Rayfield (2020). "Biomechanical properties of the jaws of two species of Clevosaurus and a reanalysis of rhynchocephalian dentary morphospace". Palaeontology. 63 (6): 919–939. Bibcode:2020Palgy..63..919C. doi:10.1111/pala.12493. S2CID 220902843.
  141. ^ Torsten M. Scheyer; Stephan N. F. Spiekman; Hans-Dieter Sues; Martín D. Ezcurra; Richard J. Butler; Marc E. H. Jones (2020). "Colobops: a juvenile rhynchocephalian reptile (Lepidosauromorpha), not a diminutive archosauromorph with an unusually strong bite". Royal Society Open Science. 7 (3): Article ID 192179. Bibcode:2020RSOS....792179S. doi:10.1098/rsos.192179. PMC 7137947. PMID 32269817.
  142. ^ Aaron R.H. LeBlanc; Sebastián Apesteguía; Hans C.E. Larsson; Michael W. Caldwell (2020). "Unique tooth morphology and prismatic enamel in Late Cretaceous sphenodontians from Argentina". Current Biology. 30 (9): 1755–1761.e2. doi:10.1016/j.cub.2020.02.071. PMID 32220319. S2CID 214659416.
  143. ^ Silvio Renesto; Evelyn Kustatscher; Piero Gianolla (2020). "A putative juvenile specimen of Eusaurosphargis dalsassoi from the Anisian (Middle Triassic) of Piz da Peres (Dolomites, northern Italy)". Rivista Italiana di Paleontologia e Stratigrafia. 126 (2): 249–259. doi:10.13130/2039-4942/13222.
  144. ^ Yuong-Nam Lee; Dal-Yong Kong; Seung-Ho Jung (2020). "The first possible choristoderan trackway from the Lower Cretaceous Daegu Formation of South Korea and its implications on choristoderan locomotion". Scientific Reports. 10 (1): Article number 14442. Bibcode:2020NatSR..1014442L. doi:10.1038/s41598-020-71384-1. PMC 7468130. PMID 32879388.
  145. ^ Thomas W. Dudgeon; Hillary C. Maddin; David C. Evans; Jordan C. Mallon (2020). "Computed tomography analysis of the cranium of Champsosaurus lindoei and implications for choristoderan neomorphic ossification". Journal of Anatomy. 236 (4): 630–659. doi:10.1111/joa.13134. PMC 7083570. PMID 31905243.
  146. ^ Thomas W. Dudgeon; Hillary C. Maddin; David C. Evans; Jordan C. Mallon (2020). "The internal cranial anatomy of Champsosaurus (Choristodera: Champsosauridae): Implications for neurosensory function". Scientific Reports. 10 (1): Article number 7122. Bibcode:2020NatSR..10.7122D. doi:10.1038/s41598-020-63956-y. PMC 7188685. PMID 32346021.
  147. ^ Martín D. Ezcurra; Felipe C. Montefeltro; Felipe L. Pinheiro; M. Jimena Trotteyn; Adriel R. Gentil; Oscar E.R. Lehmann; Luciano A. Pradelli (2020). "The stem-archosaur evolutionary radiation in South America". Journal of South American Earth Sciences. 105: Article 102935. doi:10.1016/j.jsames.2020.102935. hdl:11336/144048. S2CID 225139967.
  148. ^ Axel Hégron; Michelle R. Stocker; Adam D. Marsh; Sterling J. Nesbitt (2020). "Archosauromorphs (Reptilia: Diapsida) from the Lamy Quarry, Garita Creek Formation (Adamanian, Late Triassic), New Mexico, USA". Palaeodiversity. 13 (1): 135–149. doi:10.18476/pale.v13.a11.
  149. ^ Torsten M. Scheyer; Wei Wang; Chun Li; Feiko Miedema; Stephan N. F. Spiekman (2020). "Osteological re-description of Macrocnemus fuyuanensis (Archosauromorpha, Tanystropheidae) from the Middle Triassic of China". Vertebrata PalAsiatica. 58 (3): 169–187. doi:10.19615/j.cnki.1000-3118.200525.
  150. ^ Feiko Miedema; Stephan N. F. Spiekman; Vincent Fernandez; Jelle W. F. Reumer; Torsten M. Scheyer (2020). "Cranial morphology of the tanystropheid Macrocnemus bassanii unveiled using synchrotron microtomography". Scientific Reports. 10 (1): Article number 12412. Bibcode:2020NatSR..1012412M. doi:10.1038/s41598-020-68912-4. PMC 7381672. PMID 32709952.
  151. ^ Stephan N.F. Spiekman; James M. Neenan; Nicholas C. Fraser; Vincent Fernandez; Olivier Rieppel; Stefania Nosotti; Torsten M. Scheyer (2020). "The cranial morphology of Tanystropheus hydroides (Tanystropheidae, Archosauromorpha) as revealed by synchrotron microtomography". PeerJ. 8: e10299. doi:10.7717/peerj.10299. PMC 7682440. PMID 33240633.
  152. ^ Jordi Alexis Garcia Marsà; Federico L. Agnolín; Fernando E. Novas (2020). "Comparative bone microstructure of three archosauromorphs from the Carnian, Late Triassic Chañares Formation of Argentina". Acta Palaeontologica Polonica. 65 (2): 387–398. doi:10.4202/app.00644.2019.
  153. ^ Tiago R. Simões; Oksana Vernygora; Michael W. Caldwell; Stephanie E. Pierce (2020). "Megaevolutionary dynamics and the timing of evolutionary innovation in reptiles". Nature Communications. 11 (1): Article number 3322. Bibcode:2020NatCo..11.3322S. doi:10.1038/s41467-020-17190-9. PMC 7335191. PMID 32620878.
  154. ^ Lucas J. Legendre; David Rubilar-Rogers; Grace M. Musser; Sarah N. Davis; Rodrigo A. Otero; Alexander O. Vargas; Julia A. Clarke (2020). "A giant soft-shelled egg from the Late Cretaceous of Antarctica". Nature. 583 (7816): 411–414. Bibcode:2020Natur.583..411L. doi:10.1038/s41586-020-2377-7. PMID 32555453. S2CID 219730137.
  155. ^ Jane C. Reeves; Benjamin C. Moon; Michael J. Benton; Thomas L. Stubbs (2020). "Evolution of ecospace occupancy by Mesozoic marine tetrapods". Palaeontology. 64 (1): 31–49. doi:10.1111/pala.12508. hdl:1983/3ca9beaa-fb59-499f-b3ea-39283ad3b705. S2CID 222203712.
  156. ^ Nikolay G. Zverkov; Dmitry V. Grigoriev; Igor G. Danilov (2020). "Early Jurassic palaeopolar marine reptiles of Siberia". Geological Magazine. 158 (7): 1305–1322. doi:10.1017/S0016756820001351. S2CID 234428429.
  157. ^ María Victoria Fernandez Blanco; Martín D. Ezcurra; Paula Bona (2020). "New embryological and palaeontological evidence sheds light on the evolution of the archosauromorph ankle". Scientific Reports. 10 (1): Article number 5150. Bibcode:2020NatSR..10.5150B. doi:10.1038/s41598-020-62033-8. PMC 7083827. PMID 32198441.