Allotopy
In a story, an allotopy is when two basic meaning traits (semes) contradict each other; that is, when they trace two incompatible interpretations. It was conceived as being the opposite of an isotopy, which is the homogeneity resulting from repetition of the same seme.[1] The concept was coined in the 1970s by the Belgian semioticians known as Groupe μ.
History
[edit]In the 1970, the Belgian semioticians known under the name Groupe μ, introduced the concept of Allotopy.[2] They first discussed the concept in publications like Isotopie et allotopie,[3] Isotopie, allotopie et polytopie (1976),[4] and A Rhetoric of Poetry (1977).[5]
Allotopy and humor
[edit]Groupe μ discussed the relation of allotopy to jokes and humor.[citation needed] Salvatore Attardo, despite not using the term allotopy, formulated a theory of humor based on the idea of the "incompatible interpretations", called the isotopy-disjunction model.[6][7] This is part of the broader idea of defining humor as based on contradiction/incongruity.
See also
[edit]Notes
[edit]- ^ Jean-Marie Klinkenberg (1996) Précis de sémiotique générale, De Boeck, p. 118 [1] Archived 2011-07-13 at the Wayback Machine
- ^ "Définition de : l'allotopie". Archived from the original on 2010-03-12. Retrieved 2010-06-20.
- ^ DUBOIS J. ; EDELINE F. ; KLINKENBERG J.-M. ; MINGUET P. (1976) Isotopie et allotopie: le fonctionnement rhétorique du texte, no14, pp. 41-65 (2 p.)
- ^ Groupe μ (1976) Isotopie, allotopie et polytopie : le texte rhétorique, Versus, 14, 1 976
- ^ Groupe μ (1977)
- ^ Salvatore Attardo (2001) Humorous texts: a semantic and pragmatic analysis, sect.5.3.2, p.83
- ^ Salvatore Attardo (1994) Linguistic theories of humor, chap.2
- ^ The sign in Paris semiotics[permanent dead link ], Semiotica. Volume 111, Issue 1-2, Pages 1–34, ISSN (Online) 1613-3692, ISSN (Print) 0037-1998, doi:10.1515/semi.1996.111.1-2.1, //1996
References
[edit]- Groupe μ (1977) Rhétorique de la poésie: lecture linéaire, lecture tabulaire. Original summary in French
Further reading
[edit]- Klinkenberg et al. (2008) Figures de la figure: Sémiotique et rhétorique générale
- Serge Botet (2008) Petit traité de la métaphore: Un panorama des théories modernes de la métaphore
- François Rastier (1987) Sémantique interprétative, chapter VI Isotopies minimales, section 2 Isotopies génériques and section 4 Degres d'allotopie specifique
- Paul Delbouille, Françoise Tilkin Le lire et le délire: recueil offert à Paul Delbouille par ses collègues, pp. 223–45
External links
[edit]- Définition de : l'allotopie (in French)
- L'argumentation dans la figure (J.-M. Klinkenberg) (in French)