Jump to content

英文维基 | 中文维基 | 日文维基 | 草榴社区

Ludfordian

From Wikipedia, the free encyclopedia
Ludfordian
425.6 ± 0.9 – 423.0 ± 2.3 Ma
Paleogeography of the Ludfordian, 425 Ma
Chronology
Etymology
Name formalityFormal
Name ratified1980[4]
Usage information
Celestial bodyEarth
Regional usageGlobal (ICS)
Time scale(s) usedICS Time Scale
Definition
Chronological unitAge
Stratigraphic unitStage
Time span formalityFormal
Lower boundary definitionImprecise. Near FAD of the graptolite Saetograptus leintwardinensis
Lower boundary definition candidatesNone
Lower boundary GSSP candidate section(s)None
Lower boundary GSSPSunnyhill, Ludlow, England
52°21′33″N 2°46′38″W / 52.3592°N 2.7772°W / 52.3592; -2.7772
Lower GSSP ratified1980[4]
Upper boundary definitionFAD of the graptolite Monograptus parultimus
Upper boundary GSSPPožáry Section, Prague-Řeporyje, Czech Republic
50°01′40″N 14°19′30″E / 50.0277°N 14.3249°E / 50.0277; 14.3249
Upper GSSP ratified1984[5][6]

In the geologic timescale, the Ludfordian is the upper of two chronostratigraphic stages within the Ludlow Series. Its age is the late Silurian Period, and within both the Palaeozoic Era and Phanerozoic Eon. The rocks assigned to the Ludfordian date to between 425.6 ± 0.9 Ma and 423.0 ± 2.3 Ma (million years ago). The Ludfordian Stage succeeds the Gorstian Stage and precedes the Pridoli Epoch. It is named for the village of Ludford in Shropshire, England. The GSSP for the Ludfordian is represented as a thin shale seam, coincident with the base of the Leintwardine Formation, overlying the Bringewood Formation in England.

Paleoclimate

[edit]

The Lau event is a rapid pulse of cooling during the Ludfordian, about 424 million years ago; it is identified by a pulse of extinctions and oceanic changes. It is one of the series of fast sea-level and excursions in oxygen isotope ratios that signal fast switches between warm and cold climate states, characteristic of the Silurian climatic instability. The Lau Event occurred during an extended period of elevated seawater saturation state, explained by reservoirs of the planet's fresh water being locked up in massive polar ice caps. The sudden reappearance in normally saline marine environments of stromatolites and a mass occurrence of oncoids during the event suggested that minor extinction events like the Lau Event also resulted in periods of reduced grazing pressures on surviving "disaster biota", which can be compared to the aftermath of the more catastrophic end-Ordovician and end-Permian mass extinctions.[7]

References

[edit]
  1. ^ Jeppsson, L.; Calner, M. (2007). "The Silurian Mulde Event and a scenario for secundo—secundo events". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 93 (02): 135–154. doi:10.1017/S0263593300000377.
  2. ^ Munnecke, A.; Samtleben, C.; Bickert, T. (2003). "The Ireviken Event in the lower Silurian of Gotland, Sweden-relation to similar Palaeozoic and Proterozoic events". Palaeogeography, Palaeoclimatology, Palaeoecology. 195 (1): 99–124. doi:10.1016/S0031-0182(03)00304-3.
  3. ^ "International Chronostratigraphic Chart" (PDF). International Commission on Stratigraphy. September 2023. Retrieved December 16, 2024.
  4. ^ a b Holland, C. (1982). "The State of Silurian Stratigraphy" (PDF). Episodes. 1982 (3): 21–23. doi:10.18814/epiiugs/1982/v5i3/004. Retrieved 11 December 2020.
  5. ^ Lucas, Sepncer (6 November 2018). "The GSSP Method of Chronostratigraphy: A Critical Review". Frontiers in Earth Science. 6: 191. Bibcode:2018FrEaS...6..191L. doi:10.3389/feart.2018.00191.
  6. ^ Holland, C. (June 1985). "Series and Stages of the Silurian System" (PDF). Episodes. 8 (2): 101–103. doi:10.18814/epiiugs/1985/v8i2/005. Retrieved 11 December 2020.
  7. ^ M. Calner, "A Late Silurian extinction event and anachronistic period" Geology 33, pp. 305–308; Geology On-line Forum: response to a reply