Jump to content

英文维基 | 中文维基 | 日文维基 | 草榴社区

Poisson-type random measure

From Wikipedia, the free encyclopedia

Poisson-type random measures are a family of three random counting measures which are closed under restriction to a subspace, i.e. closed under thinning. They are the only distributions in the canonical non-negative power series family of distributions to possess this property and include the Poisson distribution, negative binomial distribution, and binomial distribution.[1] The PT family of distributions is also known as the Katz family of distributions,[2] the Panjer or (a,b,0) class of distributions[3] and may be retrieved through the Conway–Maxwell–Poisson distribution.[4]

Throwing stones

[edit]

Let be a non-negative integer-valued random variable ) with law , mean and when it exists variance . Let be a probability measure on the measurable space . Let be a collection of iid random variables (stones) taking values in with law .

The random counting measure on depends on the pair of deterministic probability measures through the stone throwing construction (STC) [5]

where has law and iid have law . is a mixed binomial process[6]

Let be the collection of positive -measurable functions. The probability law of is encoded in the Laplace functional

where is the generating function of . The mean and variance are given by

and

The covariance for arbitrary is given by

When is Poisson, negative binomial, or binomial, it is said to be Poisson-type (PT). The joint distribution of the collection is for and

The following result extends construction of a random measure to the case when the collection is expanded to where is a random transformation of . Heuristically, represents some properties (marks) of . We assume that the conditional law of follows some transition kernel according to .

Theorem: Marked STC

[edit]

Consider random measure and the transition probability kernel from into . Assume that given the collection the variables are conditionally independent with . Then is a random measure on . Here is understood as . Moreover, for any we have that where is pgf of and is defined as

The following corollary is an immediate consequence.

Corollary: Restricted STC

[edit]

The quantity is a well-defined random measure on the measurable subspace where and . Moreover, for any , we have that where .

Note where we use .

Collecting Bones

[edit]

The probability law of the random measure is determined by its Laplace functional and hence generating function.

Definition: Bone

[edit]

Let be the counting variable of restricted to . When and share the same family of laws subject to a rescaling of the parameter , then is a called a bone distribution. The bone condition for the pgf is given by .

Equipped with the notion of a bone distribution and condition, the main result for the existence and uniqueness of Poisson-type (PT) random counting measures is given as follows.

Theorem: existence and uniqueness of PT random measures

[edit]

Assume that with pgf belongs to the canonical non-negative power series (NNPS) family of distributions and . Consider the random measure on the space and assume that is diffuse. Then for any with there exists a mapping such that the restricted random measure is , that is,

iff is Poisson, negative binomial, or binomial (Poisson-type).

The proof for this theorem is based on a generalized additive Cauchy equation and its solutions. The theorem states that out of all NNPS distributions, only PT have the property that their restrictions share the same family of distribution as , that is, they are closed under thinning. The PT random measures are the Poisson random measure, negative binomial random measure, and binomial random measure. Poisson is additive with independence on disjoint sets, whereas negative binomial has positive covariance and binomial has negative covariance. The binomial process is a limiting case of binomial random measure where .

Distributional self-similarity applications

[edit]

The "bone" condition on the pgf of encodes a distributional self-similarity property whereby all counts in restrictions (thinnings) to subspaces (encoded by pgf ) are in the same family as of through rescaling of the canonical parameter. These ideas appear closely connected to those of self-decomposability and stability of discrete random variables.[7] Binomial thinning is a foundational model to count time-series.[8][9] The Poisson random measure has the well-known splitting property, is prototypical to the class of additive (completely random) random measures, and is related to the structure of Lévy processes, the jumps of Kolmogorov equations (Markov jump process), and the excursions of Brownian motion.[10] Hence the self-similarity property of the PT family is fundamental to multiple areas. The PT family members are "primitives" or prototypical random measures by which many random measures and processes can be constructed.

References

[edit]
  1. ^ Caleb Bastian, Gregory Rempala. Throwing stones and collecting bones: Looking for Poisson-like random measures, Mathematical Methods in the Applied Sciences, 2020. doi:10.1002/mma.6224
  2. ^ Katz L.. Classical and Contagious Discrete Distributions ch. Unified treatment of a broad class of discrete probability distributions, :175-182. Pergamon Press, Oxford 1965.
  3. ^ Panjer Harry H.. Recursive Evaluation of a Family of Compound Distributions. 1981;12(1):22-26
  4. ^ Conway R. W., Maxwell W. L.. A Queuing Model with State Dependent Service Rates. Journal of Industrial Engineering. 1962;12.
  5. ^ Cinlar Erhan. Probability and Stochastics. Springer-Verlag New York; 2011
  6. ^ Kallenberg Olav. Random Measures, Theory and Applications. Springer; 2017
  7. ^ Steutel FW, Van Harn K. Discrete analogues of self-decomposability and stability. The Annals of Probability. 1979;:893–899.
  8. ^ Al-Osh M. A., Alzaid A. A.. First-order integer-valued autogressive (INAR(1)) process. Journal of Time Series Analysis. 1987;8(3):261–275.
  9. ^ Scotto Manuel G., Weiß Christian H., Gouveia Sónia. Thinning models in the analysis of integer-valued time series: a review. Statistical Modelling. 2015;15(6):590–618.
  10. ^ Cinlar Erhan. Probability and Stochastics. Springer-Verlag New York; 2011.