Jump to content

英文维基 | 中文维基 | 日文维基 | 草榴社区

Pseudospectrum

From Wikipedia, the free encyclopedia

In mathematics, the pseudospectrum of an operator is a set containing the spectrum of the operator and the numbers that are "almost" eigenvalues. Knowledge of the pseudospectrum can be particularly useful for understanding non-normal operators and their eigenfunctions.

The ε-pseudospectrum of a matrix A consists of all eigenvalues of matrices which are ε-close to A:[1]

Numerical algorithms which calculate the eigenvalues of a matrix give only approximate results due to rounding and other errors. These errors can be described with the matrix E.

More generally, for Banach spaces and operators , one can define the -pseudospectrum of (typically denoted by ) in the following way

where we use the convention that if is not invertible.[2]

Notes

[edit]
  1. ^ Hogben, Leslie (2013). Handbook of Linear Algebra, Second Edition. CRC Press. p. 23-1. ISBN 9781466507296. Retrieved 8 September 2017.
  2. ^ Böttcher, Albrecht; Silbermann, Bernd (1999). Introduction to Large Truncated Toeplitz Matrices. Springer New York. p. 70. doi:10.1007/978-1-4612-1426-7_3. ISBN 978-1-4612-1426-7.

Bibliography

[edit]
  • Lloyd N. Trefethen and Mark Embree: "Spectra And Pseudospectra: The Behavior of Nonnormal Matrices And Operators", Princeton Univ. Press, ISBN 978-0691119465 (2005).
[edit]