Jump to content

英文维基 | 中文维基 | 日文维基 | 草榴社区

Rhombitetraheptagonal tiling

From Wikipedia, the free encyclopedia
Rhombitetraheptagonal tiling
Rhombitetraheptagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 4.4.7.4
Schläfli symbol rr{7,4} or
Wythoff symbol 4 | 7 2
Coxeter diagram
Symmetry group [7,4], (*742)
Dual Deltoidal tetraheptagonal tiling
Properties Vertex-transitive

In geometry, the rhombitetraheptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{4,7}. It can be seen as constructed as a rectified tetraheptagonal tiling, r{7,4}, as well as an expanded order-4 heptagonal tiling or expanded order-7 square tiling.

Dual tiling

[edit]

The dual is called the deltoidal tetraheptagonal tiling with face configuration V.4.4.4.7.

[edit]
*n42 symmetry mutation of expanded tilings: n.4.4.4
Symmetry
[n,4], (*n42)
Spherical Euclidean Compact hyperbolic Paracomp.
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]
*∞42
[∞,4]
Expanded
figures
Config. 3.4.4.4 4.4.4.4 5.4.4.4 6.4.4.4 7.4.4.4 8.4.4.4 ∞.4.4.4
Rhombic
figures
config.

V3.4.4.4

V4.4.4.4

V5.4.4.4

V6.4.4.4

V7.4.4.4

V8.4.4.4

V∞.4.4.4
Uniform heptagonal/square tilings
Symmetry: [7,4], (*742) [7,4]+, (742) [7+,4], (7*2) [7,4,1+], (*772)
{7,4} t{7,4} r{7,4} 2t{7,4}=t{4,7} 2r{7,4}={4,7} rr{7,4} tr{7,4} sr{7,4} s{7,4} h{4,7}
Uniform duals
V74 V4.14.14 V4.7.4.7 V7.8.8 V47 V4.4.7.4 V4.8.14 V3.3.4.3.7 V3.3.7.3.7 V77

References

[edit]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

See also

[edit]
[edit]