Jump to content

英文维基 | 中文维基 | 日文维基 | 草榴社区

Second-harmonic imaging microscopy

From Wikipedia, the free encyclopedia

Second-harmonic imaging microscopy (SHIM) is based on a nonlinear optical effect known as second-harmonic generation (SHG). SHIM has been established as a viable microscope imaging contrast mechanism for visualization of cell and tissue structure and function.[1] A second-harmonic microscope obtains contrasts from variations in a specimen's ability to generate second-harmonic light from the incident light while a conventional optical microscope obtains its contrast by detecting variations in optical density, path length, or refractive index of the specimen. SHG requires intense laser light passing through a material with a noncentrosymmetric molecular structure, either inherent or induced externally, for example by an electric field.[2]

Second-harmonic light emerging from an SHG material is exactly half the wavelength (frequency doubled) of the light entering the material. While two-photon-excited fluorescence (TPEF) is also a two photon process, TPEF loses some energy during the relaxation of the excited state, while SHG is energy conserving. Typically, an inorganic crystal is used to produce SHG light such as lithium niobate (LiNbO3), potassium titanyl phosphate (KTP = KTiOPO4), or lithium triborate (LBO = LiB3O5). Though SHG requires a material to have specific molecular orientation in order for the incident light to be frequency doubled, some biological materials can be highly polarizable, and assemble into fairly ordered, large noncentrosymmetric structures. While some biological materials such as collagen, microtubules, and muscle myosin[3] can produce SHG signals, even water can become ordered and produce second-harmonic signal under certain conditions, which allows SH microscopy to image surface potentials without any labeling molecules.[2] The SHG pattern is mainly determined by the phase matching condition. A common setup for an SHG imaging system will have a laser scanning microscope with a titanium sapphire mode-locked laser as the excitation source. The SHG signal is propagated in the forward direction. However, some experiments have shown that objects on the order of about a tenth of the wavelength of the SHG produced signal will produce nearly equal forward and backward signals.

Second-harmonic image of collagen (shown in white) in liver

Advantages

[edit]

SHIM offers several advantages for live cell and tissue imaging. SHG does not involve the excitation of molecules like other techniques such as fluorescence microscopy therefore, the molecules shouldn't suffer the effects of phototoxicity or photobleaching. Also, since many biological structures produce strong SHG signals, the labeling of molecules with exogenous probes is not required which can also alter the way a biological system functions. By using near infrared wavelengths for the incident light, SHIM has the ability to construct three-dimensional images of specimens by imaging deeper into thick tissues.

Difference and complementarity with two-photon fluorescence (2PEF)

[edit]

Two-photons fluorescence (2PEF) is a very different process from SHG: it involves excitation of electrons to higher energy levels, and subsequent de-excitation by photon emission (unlike SHG, although it is also a 2-photon process). Thus, 2PEF is a non coherent process, spatially (emitted isotropically) and temporally (broad, sample-dependent spectrum). It is also not specific to certain structure, unlike SHG.[4]

It can therefore be coupled to SHG in multiphoton imaging to reveal some molecules that do produce autofluorescence, like elastin in tissues (while SHG reveals collagen or myosin for instance).[4]

History

[edit]

Before SHG was used for imaging, the first demonstration of SHG was performed in 1961 by P. A. Franken, G. Weinreich, C. W. Peters, and A. E. Hill at the University of Michigan, Ann Arbor using a quartz sample.[5] In 1968, SHG from interfaces was discovered by Bloembergen [6] and has since been used as a tool for characterizing surfaces and probing interface dynamics. In 1971, Fine and Hansen reported the first observation of SHG from biological tissue samples.[7] In 1974, Hellwarth and Christensen first reported the integration of SHG and microscopy by imaging SHG signals from polycrystalline ZnSe.[8] In 1977, Colin Sheppard imaged various SHG crystals with a scanning optical microscope. The first biological imaging experiments were done by Freund and Deutsch in 1986 to study the orientation of collagen fibers in rat tail tendon.[9] In 1993, Lewis examined the second-harmonic response of styryl dyes in electric fields. He also showed work on imaging live cells. In 2006, Goro Mizutani group developed a non-scanning SHG microscope that significantly shortens the time required for observation of large samples, even if the two-photons wide-field microscope was published in 1996 [10] and could have been used to detect SHG. The non-scanning SHG microscope was used for observation of plant starch,[11][12] megamolecule,[13] spider silk[14][15] and so on. In 2010 SHG was extended to whole-animal in vivo imaging.[16][17] In 2019, SHG applications widened when it was applied to the use of selectively imaging agrochemicals directly on leaf surfaces to provide a way to evaluate the effectiveness of pesticides.[18]

Quantitative measurements

[edit]

Orientational anisotropy

[edit]

SHG polarization anisotropy can be used to determine the orientation and degree of organization of proteins in tissues since SHG signals have well-defined polarizations. By using the anisotropy equation:[19]

and acquiring the intensities of the polarizations in the parallel and perpendicular directions. A high value indicates an anisotropic orientation whereas a low value indicates an isotropic structure. In work done by Campagnola and Loew,[19] it was found that collagen fibers formed well-aligned structures with an value.

Forward over backward SHG

[edit]

SHG being a coherent process (spatially and temporally), it keeps information on the direction of the excitation and is not emitted isotropically. It is mainly emitted in forward direction (same as excitation), but can also be emitted in backward direction depending on the phase-matching condition. Indeed, the coherence length beyond which the conversion of the signal decreases is:

with for forward, but for backward such that >> . Therefore, thicker structures will appear preferentially in forward, and thinner ones in backward: since the SHG conversion depends at first approximation on the square of the number of nonlinear converters, the signal will be higher if emitted by thick structures, thus the signal in forward direction will be higher than in backward. However, the tissue can scatter the generated light, and a part of the SHG in forward can be retro-reflected in the backward direction.[20] Then, the forward-over-backward ratio F/B can be calculated,[20] and is a metric of the global size and arrangement of the SHG converters (usually collagen fibrils). It can also be shown that the higher the out-of-plane angle of the scatterer, the higher its F/B ratio (see fig. 2.14 of [21]).

Polarization-resolved SHG

[edit]

The advantages of polarimetry were coupled to SHG in 2002 by Stoller et al.[22] Polarimetry can measure the orientation and order at molecular level, and coupled to SHG it can do so with the specificity to certain structures like collagen: polarization-resolved SHG microscopy (p-SHG) is thus an expansion of SHG microscopy.[23] p-SHG defines another anisotropy parameter, as:[24]

which is, like r, a measure of the principal orientation and disorder of the structure being imaged. Since it is often performed in long cylindrical filaments (like collagen), this anisotropy is often equal to ,[25] where is the nonlinear susceptibility tensor and X the direction of the filament (or main direction of the structure), Y orthogonal to X and Z the propagation of the excitation light. The orientation ϕ of the filaments in the plane XY of the image can also be extracted from p-SHG by FFT analysis, and put in a map.[25][26]

Fibrosis quantization

[edit]

Collagen (particular case, but widely studied in SHG microscopy), can exist in various forms : 28 different types, of which 5 are fibrillar. One of the challenge is to determine and quantify the amount of fibrillar collagen in a tissue, to be able to see its evolution and relationship with other non-collagenous materials.[27]

To that end, a SHG microscopy image has to be corrected to remove the small amount of residual fluorescence or noise that exist at the SHG wavelength. After that, a mask can be applied to quantify the collagen inside the image.[27] Among other quantization techniques, it is probably the one with the highest specificity, reproductibility and applicability despite being quite complex.[27]

Others

[edit]

It has also been used to prove that backpropagating action potentials invade dendritic spines without voltage attenuation, establishing a sound basis for future work on Long-term potentiation. Its use here was that it provided a way to accurately measure the voltage in the tiny dendritic spines with an accuracy unattainable with standard two-photon microscopy.[28] Meanwhile, SHG can efficiently convert near-infrared light to visible light to enable imaging-guided photodynamic therapy, overcoming the penetration depth limitations.[29]

Materials that can be imaged

[edit]
Biological tissues imaged by second-harmonic generation (SHG) microscopy. (a) Transverse cut of a human cornea. (b) Skeletal muscle from zebrafish (myosin). (c) Adult mice-tail tendon. (d) Surface cartilage from a knee of a mature horse.

SHG microscopy and its expansions can be used to study various tissues: some example images are reported in the figure below: collagen inside the extracellular matrix remains the main application. It can be found in tendon, skin, bone, cornea, aorta, fascia, cartilage, meniscus, intervertebral disks...

Myosin can also be imaged in skeletal muscle or cardiac muscle.

Table 1: Materials visible by or that efficiently generate SHG.
Type Material Found in SHG signal Specificity
Carbohydrate Cellulose Wood, green plant, algae. Quite weak in normal cellulose,[18] but substantial in crystalline or nanocrystalline cellulose. -
Starch Staple foods, green plant Quite intense signal [30] chirality is at micro and macro level, and the SHG is different under right or left-handed circular polarization
Megamolecular polysaccharide sacran Cyanobactery From sacran cotton-like lump, fibers, and cast films signal from films is weaker [13]
Protein Fibroin and sericin Spider silk Quite weak [14]
Collagen[9] tendon, skin, bone, cornea, aorta, fascia, cartilage, meniscus, intervertebral disks ; connective tissues Quite strong, depends on the type of the collagen (does it form fibrils, fibers ?) nonlinear susceptibility tensor components are , , , with ~ and / ~ 1.4 in most cases
Myosin Skeletal or cardiac muscle[3] Quite strong nonlinear susceptibility tensor components are , , with ~ but / ~ 0.6 < 1 contrary to collagen
Tubulin Microtubules in mitosis or meiosis,[31] or in neurites (mainly axons)[32] Quite weak The microtubules have to be aligned to efficiently generate
Minerals Piezoelectric crystals Also called nonlinear crystals Strong if phase-matched Different types of phase-matching, critical of non-critical
Polar liquids Water Most living organisms Barely detectable (requires wide-field geometry and ultra-short laser pulses [33]) Directly probing electrostatic fields, since oriented water molecules satisfy phase-matching condition [34]

Coupling with THG microscopy

[edit]

Third-Harmonic Generation (THG) microscopy can be complementary to SHG microscopy, as it is sensitive to the transverse interfaces, and to the 3rd order nonlinear susceptibility [35][36]

Applications

[edit]

Cancer progression, tumor characterization

[edit]

The mammographic density is correlated with the collagen density, thus SHG can be used for identifying breast cancer.[37] SHG is usually coupled to other nonlinear techniques such as Coherent anti-Stokes Raman Scattering or Two-photon excitation microscopy, as part of a routine called multiphoton microscopy (or tomography) that provides a non-invasive and rapid in vivo histology of biopsies that may be cancerous.[38]

Breast cancer

[edit]

The comparison of forward and backward SHG images gives insight about the microstructure of collagen, itself related to the grade and stage of a tumor, and its progression in breast.[39] Comparison of SHG and 2PEF can also show the change of collagen orientation in tumors.[40] Even if SHG microscopy has contributed a lot to breast cancer research, it is not yet established as a reliable technique in hospitals, or for diagnostic of this pathology in general.[39]

Ovarian cancer

[edit]

Healthy ovaries present in SHG a uniform epithelial layer and well-organized collagen in their stroma, whereas abnormal ones show an epithelium with large cells and a changed collagen structure.[39] The r ratio (see #Orientational anisotropy) is also used [41] to show that the alignment of fibrils is slightly higher for cancerous than for normal tissues.

Skin cancer

[edit]

SHG is, again, combined to 2PEF is used to calculate the ratio:

where shg (resp. tpef) is the number of thresholded pixels in the SHG (resp. 2PEF) image,[42] a high MFSI meaning a pure SHG image (with no fluorescence). The highest MFSI is found in cancerous tissues,[39] which provides a contrast mode to differentiate from normal tissues.

SHG was also combined to Third-Harmonic Generation (THG) to show that backward (see #Forward over backward SHG) THG is higher in tumors.[43]

Pancreatic cancer

[edit]

Changes in collagen ultrastructure in pancreatic cancer can be investigated by multiphoton fluorescence and polarization-resolved SHIM.[44]

Other cancers

[edit]

SHG microscopy was reported for the study of lung, colonic, esophageal stroma and cervical cancers.[39]

Pathologies detection

[edit]

Alterations in the organization or polarity of the collagen fibrils can be signs of pathology,.[45][46]

In particular, the anisotropic alignment of collagen fibers allowed the discrimination of healthy dermis from pathological scars in skin.[47] Also, pathologies in cartilage such as osteoarthritis can be probed by polarization-resolved SHG microscopy,.[48][49] SHIM was later extended to fibro-cartilage (meniscus).[50]

Tissue engineering

[edit]

The ability of SHG to image specific molecules can reveal the structure of a certain tissue one material at a time, and at various scales (from macro to micro) using microscopy. For instance, the collagen (type I) is specifically imaged from the extracellular matrix (ECM) of cells, or when it serves as a scaffold or conjonctive material in tissues.[51] SHG also reveals fibroin in silk, myosin in muscles and biosynthetized cellulose. All of this imaging capability can be used to design artificials tissues, by targeting specific points of the tissue : SHG can indeed quantitatively measure some orientations, and material quantity and arrangement.[51] Also, SHG coupled to other multiphoton techniques can serve to monitor the development of engineered tissues, when the sample is relatively thin however.[52] Of course, they can finally be used as a quality control of the fabricated tissues.[52]

Structure of the eye

[edit]

Cornea, at the surface of the eye, is considered to be made of plywood-like structure of collagen, due to the self-organization properties of sufficiently dense collagen.[53] Yet, the collagenous orientation in lamellae is still under debate in this tissue.[54] Keratoconus cornea can also be imaged by SHG to reveal morphological alterations of the collagen.[55] Third-Harmonic Generation (THG) microscopy is moreover used to image the cornea, which is complementary to SHG signal as THG and SHG maxima in this tissue are often at different places.[56]

See also

[edit]

Sources

[edit]

References

[edit]
  1. ^ Juan Carlos Stockert, Alfonso Blázquez-Castro (2017). "Chapter 19 Non-Linear Optics". Fluorescence Microscopy in Life Sciences. Bentham Science Publishers. pp. 642–686. ISBN 978-1-68108-519-7. Retrieved 24 December 2017.
  2. ^ a b Roesel, D.; Eremchev, M.; Schönfeldová, T.; Lee, S.; Roke, S. (2022-04-18). "Water as a contrast agent to quantify surface chemistry and physics using second harmonic scattering and imaging: A perspective". Applied Physics Letters. 120 (16). AIP Publishing: 160501. Bibcode:2022ApPhL.120p0501R. doi:10.1063/5.0085807. ISSN 0003-6951. S2CID 248252664.
  3. ^ a b Nucciotti, V.; Stringari, C.; Sacconi, L.; Vanzi, F.; Fusi, L.; Linari, M.; Piazzesi, G.; Lombardi, V.; Pavone, F. S. (2010). "Probing myosin structural conformation in vivo by second-harmonic generation microscopy". Proceedings of the National Academy of Sciences. 107 (17): 7763–7768. Bibcode:2010PNAS..107.7763N. doi:10.1073/pnas.0914782107. ISSN 0027-8424. PMC 2867856. PMID 20385845.
  4. ^ a b Chen, Xiyi; Campagnola, P.J. (2016). "SHG Microscopy and Its Comparison with THG, CARS, and Multiphoton Excited Fluorescence Imaging". Second Harmonic Generation Imaging, 2nd edition. CRC Taylor&Francis. ISBN 978-1-4398-4914-9.
  5. ^ Franken, Peter; Weinreich, G; Peters, CW; Hill, AE (1961). "Generation of Optical Harmonics". Physical Review Letters. 7 (4): 118–119. Bibcode:1961PhRvL...7..118F. doi:10.1103/PhysRevLett.7.118.
  6. ^ Bloembergen, N.; Chang, R. K.; Jha, S. S.; Lee, C. H. (1968). "Optical Second-Harmonic Generation in Reflection from Media with Inversion Symmetry". Physical Review. 174 (813): 813–822. Bibcode:1968PhRv..174..813B. doi:10.1103/PhysRev.174.813.
  7. ^ Fine, S.; Hansen, W. P. (1971). "Optical second harmonic generation in biological systems". Applied Optics. 10 (10): 2350–2353. Bibcode:1971ApOpt..10.2350F. doi:10.1364/AO.10.002350. PMID 20111328.
  8. ^ Hellwarth, Robert; Christensen, Paul (1974). "Nonlinear optical microscopic examination of structure in polycrystalline ZnSe". Optics Communications. 12 (3): 318–322. Bibcode:1974OptCo..12..318H. doi:10.1016/0030-4018(74)90024-8.
  9. ^ a b Freund, I.; Deutsch, M. (1986). "Second-harmonic microscopy of biological tissue". Optics Letters. 11 (2): 94–96. Bibcode:1986OptL...11...94F. doi:10.1364/OL.11.000094. PMID 19730544.
  10. ^ Brakenhoff, G.J.; Sonoda, Y.; Squier, J.; Norris, T.; Bliton, A.C.; Wade, M.H.; Athey, B. (1996). "Real-time two-photon confocal microscopy using afemtosecond, amplified Tisapphire system". Journal of Microscopy. 181 (3): 253–259. doi:10.1046/j.1365-2818.1996.97379.x. hdl:2027.42/71623. PMID 8642584. S2CID 12174100.
  11. ^ Mizutani, G.; Sonoda, Y.; Sano, H.; Sakamoto, M.; Takahashi, T.; Ushioda, S. (2000). "Detection of starch granules in a living plant by optical second harmonic microscopy". Journal of Luminescence. 87: 824–826. Bibcode:2000JLum...87..824M. doi:10.1016/S0022-2313(99)00428-7.
  12. ^ Zhao, Yue; Takahashi, Shogo; Li, Yanrong; Hien, K. T. T.; Matsubara, Akira; Mizutani, Goro; Nakamura, Yasunori (2018). "Ungerminated Rice Grains Observed by Femtosecond Pulse Laser Second-Harmonic Generation Microscopy". J. Phys. Chem. B. 122 (32): 7855–7861. arXiv:1808.05449. doi:10.7566/JPSJ.86.124401. PMID 30040415. S2CID 51687400.
  13. ^ a b Zhao, Yue; Hien, Khuat Thi Thu; Mizutani, Goro; Rutt, Harvey N.; Amornwachirabodee, Kittima; Okajima, Maiko; Kaneko, Tatsuo (2017). "Optical second-harmonic images of sacran megamolecule aggregates". Journal of the Optical Society of America A. 34 (2): 146–152. arXiv:1702.07165. Bibcode:2017JOSAA..34..146Z. doi:10.1364/JOSAA.34.000146. PMID 28157840. S2CID 4533122.
  14. ^ a b Zhao, Yue; Hien, Khuat Thi Thu; Mizutani, Goro; Rutt, Harvey N. (June 2017). "Second-order nonlinear optical microscopy of spider silk". Applied Physics B. 123 (6): 188. arXiv:1706.03186. Bibcode:2017ApPhB.123..188Z. doi:10.1007/s00340-017-6766-z. S2CID 51684427.
  15. ^ Zhao, Yue; Li, Yanrong; Hien, K. T. T.; Mizutani, Goro; Rutt, Harvey N. (2019). "Observation of Spider Silk by Femtosecond Pulse Laser Second Harmonic Generation Microscopy". Surf. Interface Anal. 51 (1): 50–56. arXiv:1812.10390. doi:10.1002/sia.6545. S2CID 104921418.
  16. ^ Cohen, B. E. (2010). "Biological imaging: Beyond fluorescence". Nature. 467 (7314): 407–8. Bibcode:2010Natur.467..407C. doi:10.1038/467407a. PMID 20864989. S2CID 205058963.
  17. ^ Pantazis, P.; Maloney, J.; Wu, D.; Fraser, S. (2010). "Second harmonic generating (SHG) nanoprobes for in vivo imaging". Proceedings of the National Academy of Sciences of the United States of America. 107 (33): 14535–14540. Bibcode:2010PNAS..10714535P. doi:10.1073/pnas.1004748107. PMC 2930484. PMID 20668245.
  18. ^ a b Grubbs, Benjamin; Etter, Nicholas; Slaughter, Wesley; Pittsford, Alexander; Smith, Connor; Schmitt, Paul (August 2019). "A Low-Cost Beam-Scanning Second Harmonic Generation Microscope with Application for Agrochemical Development and Testing". Analytical Chemistry. 91 (18): 11723–11730. doi:10.1021/acs.analchem.9b02304. PMID 31424922. S2CID 201099822.
  19. ^ a b Campagnola, Paul J; Loew, Leslie M (2003). "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms". Nature Biotechnology. 21 (11): 1356–1360. doi:10.1038/nbt894. ISSN 1087-0156. PMID 14595363. S2CID 18701570.
  20. ^ a b Chen, Xiyi; Nadiarynkh, Oleg; Plotnikov, Sergey; Campagnola, Paul J (2012). "Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure". Nature Protocols. 7 (4): 654–669. doi:10.1038/nprot.2012.009. ISSN 1754-2189. PMC 4337962. PMID 22402635.
  21. ^ Cicchi, Riccardo; Sacconi, Leonardo; Vanzi, Francesco; Pavone, Francesco S. (2016). "How to Build an SHG Apparatus" in Second Harmonic Generation Imaging, 2nd edition. CRC Taylor&Francis. ISBN 978-1-4398-4914-9.
  22. ^ Stoller, P.; Reiser, K.; Celliers, P.; Rubenchik, A. (2002). "Polarization-modulated second harmonic generation in collagen". Biophys. J. 82 (6): 3330–3342. Bibcode:2002BpJ....82.3330S. doi:10.1016/S0006-3495(02)75673-7. PMC 1302120. PMID 12023255.
  23. ^ Duboisset, Julien; Aït-Belkacem, Dora; Roche, Muriel; Rigneault, Hervé; Brasselet, Sophie (2012). "Generic model of the molecular orientational distribution probed by polarization-resolved second-harmonic generation" (PDF). Physical Review A. 85 (4): 043829. Bibcode:2012PhRvA..85d3829D. doi:10.1103/PhysRevA.85.043829. ISSN 1050-2947. S2CID 85559569.
  24. ^ Teulon, Claire; Gusachenko, Ivan; Latour, Gaël; Schanne-Klein, Marie-Claire (2015). "Theoretical, numerical and experimental study of geometrical parameters that affect anisotropy measurements in polarization-resolved SHG microscopy" (PDF). Optics Express. 23 (7): 9313–28. Bibcode:2015OExpr..23.9313T. doi:10.1364/OE.23.009313. ISSN 1094-4087. PMID 25968762.
  25. ^ a b Gusachenko, Ivan; Tran, Viet; Houssen, Yannick Goulam; Allain, Jean-Marc; Schanne-Klein, Marie-Claire (2012). "Polarization-Resolved Second-Harmonic Generation in Tendon upon Mechanical Stretching". Biophysical Journal. 102 (9): 2220–2229. Bibcode:2012BpJ...102.2220G. doi:10.1016/j.bpj.2012.03.068. ISSN 0006-3495. PMC 3341536. PMID 22824287.
  26. ^ Mazumder, Nirmal; Deka, Gitanjal; Wu, Wei-Wen; Gogoi, Ankur; Zhuo, Guan-Yu; Kao, Fu-Jen (2017). "Polarization resolved second harmonic microscopy". Methods. 128: 105–118. doi:10.1016/j.ymeth.2017.06.012. ISSN 1046-2023. PMID 28624539.
  27. ^ a b c Marie-Claire Schanne-Klein (2016). "SHG Imaging of Collagen and Application to Fibrosis Quantization" in Second Harmonic Generation Imaging, 2nd edition. CRC Taylor&Francis. ISBN 978-1-4398-4914-9.
  28. ^ Nuriya, Mutsuo; Jiang, Jiang; Nemet, Boaz; Eisenthal, Kenneth B.; Yuste, Rafael (2006). "Imaging membrane potential in dendritic spines". PNAS. 103 (3): 786–790. Bibcode:2006PNAS..103..786N. doi:10.1073/pnas.0510092103. PMC 1334676. PMID 16407122.
  29. ^ Gu, Bobo; Pliss, Artem; Kuzmin, Andrey N. (2016). "In-situ second harmonic generation by cancer cell targeting ZnO nanocrystals to effect photodynamic action in subcellular space". Biomaterials. 104: 78–86. doi:10.1016/j.biomaterials.2016.07.012. PMID 27442221.
  30. ^ Psilodimitrakopoulos, Sotiris; Amat-Roldan, Ivan; Loza-Alvarez, Pablo; Artigas, David (2010). "Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy". Journal of Optics. 12 (8): 084007. Bibcode:2010JOpt...12h4007P. doi:10.1088/2040-8978/12/8/084007. hdl:2117/10342. ISSN 2040-8978. S2CID 120603827.
  31. ^ Pavone, Francesco S.; Campagnola, P.J. (2016). Second Harmonic Generation Imaging, 2nd edition. CRC Taylor&Francis. ISBN 978-1-4398-4914-9.
  32. ^ Van Steenbergen, V.; Boesmans, W.; Li, Z.; de Coene, Y.; Vints, K.; Baatsen, P.; Dewachter, I.; Ameloot, M.; Clays, K.; Vanden Berghe, P. (2019). "Molecular understanding of label-free second harmonic imaging of microtubules". Nature Communications. 10 (1): 3530. Bibcode:2019NatCo..10.3530V. doi:10.1038/s41467-019-11463-8. ISSN 2041-1723. PMC 6684603. PMID 31387998.
  33. ^ Roesel, D.; Eremchev, M.; Schönfeldová, T.; Lee, S.; Roke, S. (18 April 2022). "Water as a contrast agent to quantify surface chemistry and physics using second harmonic scattering and imaging: A perspective". Applied Physics Letters. 120 (16): 160501. Bibcode:2022ApPhL.120p0501R. doi:10.1063/5.0085807. eISSN 1077-3118. ISSN 0003-6951. S2CID 248252664.
  34. ^ Roesel, David; Eremchev, Maksim; Poojari, Chetan S.; Hub, Jochen S.; Roke, Sylvie (15 December 2022). "Ion-Induced Transient Potential Fluctuations Facilitate Pore Formation and Cation Transport through Lipid Membranes". Journal of the American Chemical Society. 144 (51): 23352–23357. doi:10.1021/jacs.2c08543. eISSN 1520-5126. ISSN 0002-7863. PMC 9801421. PMID 36521841.
  35. ^ Barad, Y.; Eisenberg, H.; Horowitz, M.; Silberberg, Y. (1997). "Nonlinear scanning laser microscopy by third harmonic generation". Applied Physics Letters. 70 (8): 922–924. Bibcode:1997ApPhL..70..922B. doi:10.1063/1.118442. ISSN 0003-6951.
  36. ^ Olivier, N.; Luengo-Oroz, M. A.; Duloquin, L.; Faure, E.; Savy, T.; Veilleux, I.; Solinas, X.; Debarre, D.; Bourgine, P.; Santos, A.; Peyrieras, N.; Beaurepaire, E. (2010). "Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy" (PDF). Science. 329 (5994): 967–971. Bibcode:2010Sci...329..967O. doi:10.1126/science.1189428. ISSN 0036-8075. PMID 20724640. S2CID 6971291.
  37. ^ Alowami, Salem; Troup, Sandra; Al-Haddad, Sahar; Kirkpatrick, Iain; Watson, Peter H (2003). "Mammographic density is related to stroma and stromal proteoglycan expression". Breast Cancer Research. 5 (5): R129-35. doi:10.1186/bcr622. ISSN 1465-542X. PMC 314426. PMID 12927043.
  38. ^ König, Karsten (2018). "Multiphoton Tomography (MPT)" Chap.13 in Multiphoton Microscopy and Fluorescence Lifetime Imaging - Applications in Biology and Medicine. De Gruyter. ISBN 978-3-11-042998-5.
  39. ^ a b c d e Keikhosravi, Adib; Bredfeldt, Jeremy S.; Sagar, Abdul Kader; Eliceiri, Kevin W. (2014). "Second-harmonic generation imaging of cancer". Quantitative Imaging in Cell Biology. Methods in Cell Biology. Vol. 123. pp. 531–546. doi:10.1016/B978-0-12-420138-5.00028-8. ISBN 978-0-12-420138-5. ISSN 0091-679X. PMID 24974046.
  40. ^ Provenzano, Paolo P; Eliceiri, Kevin W; Campbell, Jay M; Inman, David R; White, John G; Keely, Patricia J (2006). "Collagen reorganization at the tumor-stromal interface facilitates local invasion". BMC Medicine. 4 (38): 38. doi:10.1186/1741-7015-4-38. PMC 1781458. PMID 17190588.
  41. ^ Nadiarnykh, Oleg; LaComb, Ronald B; Brewer, Molly A; Campagnola, Paul J (2010). "Alterations of the extracellular matrix in ovarian cancer studied by Second Harmonic Generation imaging microscopy". BMC Cancer. 10 (1): 94. doi:10.1186/1471-2407-10-94. ISSN 1471-2407. PMC 2841668. PMID 20222963.
  42. ^ Lin, Sung-Jan; Jee, Shiou-Hwa; Kuo, Chien-Jui; Wu, Ruei-Jr; Lin, Wei-Chou; Chen, Jau-Shiuh; Liao, Yi-Hua; Hsu, Chih-Jung; Tsai, Tsen-Fang; Chen, Yang-Fang; Dong, Chen-Yuan (2006). "Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging". Optics Letters. 31 (18): 2756–8. Bibcode:2006OptL...31.2756L. doi:10.1364/OL.31.002756. ISSN 0146-9592. PMID 16936882.
  43. ^ Chen, Szu-Yu; Chen, Shee-Uan; Wu, Hai-Yin; Lee, Wen-Jeng; Liao, Yi-Hua; Sun, Chi-Kuang (2009). "In Vivo Virtual Biopsy of Human Skin by Using Noninvasive Higher Harmonic Generation Microscopy" (PDF). IEEE Journal of Selected Topics in Quantum Electronics. 16 (3): 478–492. doi:10.1109/JSTQE.2009.2031987. S2CID 21644641.
  44. ^ Tokarz, Danielle; Cisek, Richard; Joseph, Ariana; Golaraei, Ahmad; Mirsanaye, Kamdin; Krouglov, Serguei; Asa, Sylvia L.; Wilson, Brian C.; Barzda, Virginijus (2019). "Characterization of Pancreatic Cancer Tissue Using Multiphoton Excitation Fluorescence and Polarization-Sensitive Harmonic Generation Microscopy". Frontiers in Oncology. 9: 272. doi:10.3389/fonc.2019.00272. ISSN 2234-943X. PMC 6478795. PMID 31058080.
  45. ^ König, Karsten (2018). Multiphoton Microscopy and Fluorescence Lifetime Imaging - Applications in Biology and Medicine. De Gruyter. ISBN 978-3-11-042998-5.
  46. ^ Cicchi, Riccardo (2014). "The New Digital Pathology: Just Say NLO". Digestive Diseases and Sciences. 59 (7): 1347–1348. doi:10.1007/s10620-014-3165-8. ISSN 0163-2116. PMID 24817337.
  47. ^ Cicchi, Riccardo; Vogler, Nadine; Kapsokalyvas, Dimitrios; Dietzek, Benjamin; Popp, Jürgen; Pavone, Francesco Saverio (2013). "From molecular structure to tissue architecture: collagen organization probed by SHG microscopy". Journal of Biophotonics. 6 (2): 129–142. doi:10.1002/jbio.201200092. ISSN 1864-063X. PMID 22791562.Open access icon
  48. ^ Mansfield, Jessica C.; Winlove, C. Peter; Moger, Julian; Matcher, Steve J. (2008). "Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy". Journal of Biomedical Optics. 13 (4): 044020. Bibcode:2008JBO....13d4020M. doi:10.1117/1.2950318. hdl:10036/4485. ISSN 1083-3668. PMID 19021348. S2CID 25096045.Open access icon
  49. ^ Yeh, Alvin T.; Hammer-Wilson, Marie J.; Van Sickle, David C.; Benton, Hilary P.; Zoumi, Aikaterini; Tromberg, Bruce J.; Peavy, George M. (2005). "Nonlinear optical microscopy of articular cartilage". Osteoarthritis and Cartilage. 13 (4): 345–352. doi:10.1016/j.joca.2004.12.007. ISSN 1063-4584. PMID 15780648. S2CID 20052077.Open access icon
  50. ^ Han, Woojin M.; Heo, Su-Jin; Driscoll, Tristan P.; Delucca, John F.; McLeod, Claire M.; Smith, Lachlan J.; Duncan, Randall L.; Mauck, Robert L.; Elliott, Dawn M. (2016). "Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage". Nature Materials. 15 (4): 477–484. Bibcode:2016NatMa..15..477H. doi:10.1038/nmat4520. ISSN 1476-1122. PMC 4805445. PMID 26726994.
  51. ^ a b Chen, W.L.; Lee, H.S. (2016). "SHG Imaging for Tissue Engineering Applications". Second Harmonic Generation Imaging, 2nd edition. CRC Taylor&Francis. ISBN 978-1-4398-4914-9.
  52. ^ a b Enejder, A.; Brackmann, C. (2020). "Use of Multiphoton Microscopy for Tissue Engineering Applications". Imaging in Cellular and Tissue Engineering, 1st edition. CRC Taylor&Francis. ISBN 9780367445867.
  53. ^ Krachmer, J.H.; Mannis, M.J.; Holland, E.J. (2005). Cornea, Fundamentals, Diagnosis and Management. 2nd edition. Elsevier Mosby. ISBN 0323023150.
  54. ^ Bueno, Juan M.; Ávila, Francisco J.; Martínez-García, M. Carmen (2019). "Quantitative Analysis of the Corneal Collagen Distribution after In Vivo Cross-Linking with Second Harmonic Microscopy". BioMed Research International. 2019: 3860498. doi:10.1155/2019/3860498. ISSN 2314-6133. PMC 6348900. PMID 30756083.
  55. ^ Morishige, N.; Shin-gyou-uchi, R.; Azumi, H.; Ohta, H.; Morita, Y.; Yamada, N.; Kimura, K.; Takahara, A.; Sonoda, K.-H. (2014). "Quantitative Analysis of Collagen Lamellae in the Normal and Keratoconic Human Cornea by Second Harmonic Generation Imaging Microscopy". Investigative Ophthalmology & Visual Science. 55 (12): 8377–8385. doi:10.1167/iovs.14-15348. ISSN 0146-0404. PMID 25425311.
  56. ^ Olivier, N.; Débarre, D.; Beaurepaire, E. (2016). "THG Microscopy of Cells and Tissues: Contrast Mechanisms and Applications". Second Harmonic Generation Imaging, 2nd edition. CRC Taylor&Francis. ISBN 978-1-4398-4914-9.