Jump to content

英文维基 | 中文维基 | 日文维基 | 草榴社区

Two-state trajectory

From Wikipedia, the free encyclopedia
Figure 1: Two-state trajectories

A two-state trajectory (also termed two-state time trajectory or a trajectory with two states) is a dynamical signal that fluctuates between two distinct values: ON and OFF, open and closed, , etc. Mathematically, the signal has, for every either the value or .

In most applications, the signal is stochastic; nevertheless, it can have deterministic ON-OFF components. A completely deterministic two-state trajectory is a square wave. There are many ways one can create a two-state signal, e.g. flipping a coin repeatedly.

A stochastic two-state trajectory is among the simplest stochastic processes. Extensions include: three-state trajectories, higher discrete state trajectories, and continuous trajectories in any dimension.[1]

[edit]

Two state trajectories are very common. Here, we focus on relevant trajectories in scientific experiments: these are seen in measurements in chemistry, physics, and the biophysics of individual molecules[2][3] (e.g. measurements of protein dynamics and DNA and RNA dynamics,[4][5][6][7][8] activity of ion channels,[9][10] enzyme activity,[11][12][13][14][15] quantum dots[16][17][18][19][20][21]). From these experiments, one aims at finding the correct model explaining the measured process.[22][23][24][25][26][27][28][29][30][31][32] We explain about various relevant systems in what follows.

Ion channels

[edit]

Since the ion channel is either opened or closed, when recording the number of ions that go through the channel when time elapses, observed is a two-state trajectory of the current versus time.

Enzymes

[edit]

Here, there are several possible experiments on the activity of individual enzymes with a two-state signal. For example, one can create substrate that only upon the enzymatic activity shines light when activated (with a laser pulse). So, each time the enzyme acts, we see a burst of photons during the time period that the product molecule is in the laser area.

Dynamics of biological molecules

[edit]

Structural changes of molecules are viewed in various experiments' type. Förster resonance energy transfer is an example. In many cases one sees a time trajectory that fluctuates among several cleared defined states.

Quantum dots

[edit]

Another system that fluctuates among an on state and an off state is a quantum dot. Here, the fluctuations are since the molecule is either in a state that emits photons or in a dark state that does not emit photons (the dynamics among the states are influenced also from its interactions with the surroundings).

See also

[edit]

References

[edit]
  1. ^ Erhan Cinlar (1975). Introduction to Stochastic Processes. Prentice Hall Inc, New Jersey. ISBN 978-0-486-49797-6.
  2. ^ Moerner, W. E.; Orrit, M (1999). "Illuminating Single Molecules in Condensed Matter". Science. 283 (5408): 1670–6. Bibcode:1999Sci...283.1670M. doi:10.1126/science.283.5408.1670. PMID 10073924.
  3. ^ Weiss, Shimon (1999). "Fluorescence Spectroscopy of Single Biomolecules". Science. 283 (5408): 1676–83. Bibcode:1999Sci...283.1676W. doi:10.1126/science.283.5408.1676. PMID 10073925.
  4. ^ Schuler, Benjamin; Lipman, Everett A.; Eaton, William A. (2002). "Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy". Nature. 419 (6908): 743–7. Bibcode:2002Natur.419..743S. doi:10.1038/nature01060. PMID 12384704. S2CID 1356830.
  5. ^ Yang, Haw; Luo, Guobin; Karnchanaphanurach, Pallop; Louie, Tai-Man; Rech, Ivan; Cova, Sergio; Xun, Luying; Xie, X. Sunney (2003). "Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer". Science. 302 (5643): 262–6. Bibcode:2003Sci...302..262Y. doi:10.1126/science.1086911. PMID 14551431. S2CID 18706150.
  6. ^ Min, Wei; Luo, Guobin; Cherayil, Binny J.; Kou, S. C.; Xie, X. Sunney (2005). "Observation of a Power-Law Memory Kernel for Fluctuations within a Single Protein Molecule". Physical Review Letters. 94 (19): 198302. Bibcode:2005PhRvL..94s8302M. doi:10.1103/PhysRevLett.94.198302. PMID 16090221.
  7. ^ Rhoades, Elizabeth; Gussakovsky, Eugene; Haran, Gilad (2003). "Watching proteins fold one molecule at a time". Proceedings of the National Academy of Sciences. 100 (6): 3197–202. Bibcode:2003PNAS..100.3197R. doi:10.1073/pnas.2628068100. JSTOR 3139336. PMC 152269. PMID 12612345.
  8. ^ Zhuang, X.; Kim, H; Pereira, MJ; Babcock, HP; Walter, NG; Chu, S (2002). "Correlating Structural Dynamics and Function in Single Ribozyme Molecules". Science. 296 (5572): 1473–6. Bibcode:2002Sci...296.1473Z. doi:10.1126/science.1069013. PMID 12029135. S2CID 9459136.
  9. ^ Neher, Erwin; Sakmann, Bert (1976). "Single-channel currents recorded from membrane of denervated frog muscle fibres". Nature. 260 (5554): 799–802. Bibcode:1976Natur.260..799N. doi:10.1038/260799a0. PMID 1083489. S2CID 4204985.
  10. ^ Kasianowicz, John J.; Brandin, Eric; Branton, Daniel; Deamer, David W. (1996). "Characterization of individual polynucleotide molecules using a membrane channel". Proceedings of the National Academy of Sciences. 93 (24): 13770–3. Bibcode:1996PNAS...9313770K. doi:10.1073/pnas.93.24.13770. JSTOR 40976. PMC 19421. PMID 8943010.
  11. ^ Lu, H. P.; Xun, L; Xie, XS (1998). "Single-Molecule Enzymatic Dynamics". Science. 282 (5395): 1877–82. Bibcode:1998Sci...282.1877P. doi:10.1126/science.282.5395.1877. PMID 9836635.
  12. ^ Edman, Lars; Földes-Papp, Zeno; Wennmalm, Stefan; Rigler, Rudolf (1999). "The fluctuating enzyme: A single molecule approach". Chemical Physics. 247 (1): 11–22. Bibcode:1999CP....247...11E. doi:10.1016/S0301-0104(99)00098-1.
  13. ^ Velonia, Kelly; Flomenbom, Ophir; Loos, Davey; Masuo, Sadahiro; Cotlet, Mircea; Engelborghs, Yves; Hofkens, Johan; Rowan, Alan E.; et al. (2005). "Single-Enzyme Kinetics of CALB-Catalyzed Hydrolysis". Angewandte Chemie International Edition. 44 (4): 560–4. doi:10.1002/anie.200460625. PMID 15619259.
  14. ^ Flomenbom, O.; Velonia, K; Loos, D; Masuo, S; Cotlet, M; Engelborghs, Y; Hofkens, J; Rowan, AE; et al. (2005). "Stretched exponential decay and correlations in the catalytic activity of fluctuating single lipase molecules". Proceedings of the National Academy of Sciences. 102 (7): 2368–72. Bibcode:2005PNAS..102.2368F. doi:10.1073/pnas.0409039102. PMC 548972. PMID 15695587.
  15. ^ English, Brian P; Min, Wei; Van Oijen, Antoine M; Lee, Kang Taek; Luo, Guobin; Sun, Hongye; Cherayil, Binny J; Kou, S C; Xie, X Sunney (2005). "Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited". Nature Chemical Biology. 2 (2): 87–94. doi:10.1038/nchembio759. PMID 16415859. S2CID 2201882.
  16. ^ Nie, S; Chiu, D.; Zare, R. (1994). "Probing individual molecules with confocal fluorescence microscopy". Science. 266 (5187): 1018–21. Bibcode:1994Sci...266.1018N. doi:10.1126/science.7973650. PMID 7973650.
  17. ^ Schmidt, Ulrich; Weiss, Matthias (2011). "Anomalous diffusion of oligomerized transmembrane proteins". The Journal of Chemical Physics. 134 (16): 165101. Bibcode:2011JChPh.134p5101S. doi:10.1063/1.3582336. PMID 21528980.
  18. ^ Zumofen, Gert; Hohlbein, Johannes; Hübner, Christian (2004). "Recurrence and Photon Statistics in Fluorescence Fluctuation Spectroscopy". Physical Review Letters. 93 (26): 260601. Bibcode:2004PhRvL..93z0601Z. doi:10.1103/PhysRevLett.93.260601. PMID 15697961.
  19. ^ Cohen, Adam E.; Moerner, WE (2006). "Suppressing Brownian motion of individual biomolecules in solution". Proceedings of the National Academy of Sciences. 103 (12): 4362–5. Bibcode:2006PNAS..103.4362C. doi:10.1073/pnas.0509976103. JSTOR 30048946. PMC 1450176. PMID 16537418.
  20. ^ Moerner, W. E.; Dickson, Robert M.; Cubitt, Andrew B.; Tsien, Roger Y. (1997). "On/off blinking and switching behaviour of single molecules of green fluorescent protein". Nature. 388 (6640): 355–8. Bibcode:1997Natur.388..355D. doi:10.1038/41048. PMID 9237752. S2CID 4313830.
  21. ^ Chung, Inhee; Bawendi, Moungi (2004). "Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots". Physical Review B. 70 (16): 165304. Bibcode:2004PhRvB..70p5304C. doi:10.1103/PhysRevB.70.165304.
  22. ^ Bauer, R.J.; Bowman, B.F.; Kenyon, J.L. (1987). "Theory of the kinetic analysis of patch-clamp data". Biophysical Journal. 52 (6): 961–78. Bibcode:1987BpJ....52..961B. doi:10.1016/S0006-3495(87)83289-7. PMC 1330095. PMID 2447973.
  23. ^ Kienker, P. (1989). "Equivalence of Aggregated Markov Models of Ion-Channel Gating". Proceedings of the Royal Society B: Biological Sciences. 236 (1284): 269–309. Bibcode:1989RSPSB.236..269K. doi:10.1098/rspb.1989.0024. JSTOR 2410562. PMID 2471201. S2CID 29761646.
  24. ^ Fredkin, Donald R.; Rice, John A. (1986). "On Aggregated Markov Processes". Journal of Applied Probability. 23 (1): 208–14. doi:10.2307/3214130. JSTOR 3214130. S2CID 123503233.
  25. ^ Colquhoun, D.; Hawkes, A. G. (1982). "On the Stochastic Properties of Bursts of Single Ion Channel Openings and of Clusters of Bursts". Philosophical Transactions of the Royal Society B: Biological Sciences. 300 (1098): 1–59. Bibcode:1982RSPTB.300....1C. doi:10.1098/rstb.1982.0156. JSTOR 2395924. PMID 6131450.
  26. ^ Song, L.; Magleby, K.L. (1994). "Testing for microscopic reversibility in the gating of maxi K+ channels using two-dimensional dwell-time distributions". Biophysical Journal. 67 (1): 91–104. Bibcode:1994BpJ....67...91S. doi:10.1016/S0006-3495(94)80458-8. PMC 1225338. PMID 7919030.
  27. ^ Qin, Feng; Auerbach, Anthony; Sachs, Frederick (2000). "Hidden Markov Modeling for Single Channel Kinetics with Filtering and Correlated Noise". Biophysical Journal. 79 (4): 1928–44. Bibcode:2000BpJ....79.1928Q. doi:10.1016/S0006-3495(00)76442-3. PMC 1301084. PMID 11023898.
  28. ^ Bruno, W. J.; Yang, J; Pearson, JE (2005). "Using independent open-to-closed transitions to simplify aggregated Markov models of ion channel gating kinetics". Proceedings of the National Academy of Sciences. 102 (18): 6326–31. Bibcode:2005PNAS..102.6326B. doi:10.1073/pnas.0409110102. JSTOR 3375322. PMC 1088360. PMID 15843461.
  29. ^ Flomenbom, O.; Silbey, RJ (2006). "Utilizing the information content in two-state trajectories". Proceedings of the National Academy of Sciences. 103 (29): 10907–10. arXiv:q-bio/0703013. Bibcode:2006PNAS..10310907F. doi:10.1073/pnas.0604546103. JSTOR 30049381. PMC 1544147. PMID 16832051.
  30. ^ Flomenbom, Ophir; Klafter, Joseph; Szabo, Attila (2005). "What Can One Learn from Two-State Single-Molecule Trajectories?". Biophysical Journal. 88 (6): 3780–3. arXiv:q-bio/0502006. Bibcode:2005BpJ....88.3780F. doi:10.1529/biophysj.104.055905. PMC 1305612. PMID 15764653.
  31. ^ Flomenbom, O.; Silbey, R. J. (2008). "Toolbox for analyzing finite two-state trajectories". Physical Review E. 78 (6): 066105. arXiv:0802.1520. Bibcode:2008PhRvE..78f6105F. doi:10.1103/PhysRevE.78.066105. PMID 19256903. S2CID 16196911.
  32. ^ Flomenbom, Ophir (2011). "Making it Possible: Constructing a Reliable Mechanism from a Finite Trajectory". In Komatsuzaki, Tamiki; Kawakami, Masaru; Takahashi, Satoshi; Yang, Haw; Silbey, Robert J. (eds.). Single-Molecule Biophysics: Experiment and Theory, Volume 146. Advances in Chemical Physics. pp. 367–93. arXiv:0912.3952. doi:10.1002/9781118131374.ch13. ISBN 978-1-118-13137-4. S2CID 15743989.