Jump to content

英文维基 | 中文维基 | 日文维基 | 草榴社区

Ultra-high temperature ceramic matrix composite

From Wikipedia, the free encyclopedia

Ultra-high temperature ceramic matrix composites (UHTCMC) are a class of refractory ceramic matrix composites (CMCs) with melting points significantly higher than that of typical CMCs.[1] Among other applications, they are the subject of extensive research in the aerospace engineering field for their ability to withstand extreme heat for extended periods of time, a crucial property in applications such as thermal protection systems (TPS) and rocket nozzles. Carbon fiber-reinforced carbon (C/C) maintains its structural integrity up to 2000 °C;[2] however, C/C is mainly used as an ablative material, designed to purposefully erode under extreme temperatures in order to dissipate energy. Carbon fiber reinforced silicon carbide matrix composites (C/SiC) and Silicon carbide fiber reinforced silicon carbide matrix composites (SiC/SiC) are considered reusable materials because silicon carbide is a hard material with a low erosion and it forms a silica glass layer during oxidation which prevents further oxidation of inner material. However, above a certain temperature (it depends on environmental conditions of oxygen partial pressure) starts the active oxidation of silicon carbide matrix to gaseous silicon monoxide (SiO(g)), consequently loss of protection from further oxidation, which leads the material to an uncontrolled and fast erosion. For this reason C/SiC and SiC/SiC are used in the range of temperature between 1200° - 1400 °C.

On the one hand CMCs are lightweight materials with high strength-to-weight ratio even at high temperature, high thermal shock resistance and toughness but suffer of erosion during service. On the other side bulk ceramics made of ultra-high temperature ceramics (e.g. ZrB2, HfB2, or their composites) are hard materials which show low erosion even above 2000 °C but are heavy and suffer of catastrophic fracture and low thermal shock resistance compared to CMCs. Failure is easily under mechanical or thermo-mechanical loads because of cracks initiated by small defects or scratches. The possibility to obtain reusable components for aerospace field based on UHTC matrix into fiber reinforced composites is still under investigation.

The European Commission funded a research project, C3HARME,[3][4] under the NMP-19-2015 call of Framework Programmes for Research and Technological Development in 2016 (still ongoing) for the design, development, production and testing of a new class of ultra-refractory ceramic matrix composites reinforced with silicon carbide fibers and Carbon fibers suitable for applications in severe aerospace environments as possible near-zero ablation thermal protection system (TPS) materials (e.g. heat shield) and for propulsion (e.g. rocket nozzle).[5][6] The demand for reusable advanced materials with temperature capability over 2000 °C has been growing.[7][8][9] Recently carbon fiber reinforced zirconium boride-based composites obtained by slurry infiltration (SI) and sintering has been investigated.[10][11][12][13][14][15][16][17][18][19][20]

Breakthroughs in research

[edit]

The European Commission funded a research project, C3HARME, under the NMP-19-2015 call of Framework Programmes for Research and Technological Development in 2016 (still ongoing) for the design, development, production and testing of a new class of ultra-refractory ceramic matrix composites reinforced with silicon carbide fibers and Carbon fibers suitable for applications in severe aerospace environments.[21]

References

[edit]
  1. ^ Marumo, Tomoki; Koide, Noriatsu; Arai, Yutaro; Nishimura, Toshiyuki; Hasegawa, Makoto; Inoue, Ryo (October 2022). "Characterization of carbon fiber-reinforced ultra-high temperature ceramic matrix composites fabricated via Zr-Ti alloy melt infiltration". Journal of the European Ceramic Society. 42 (13): 5208–5219. doi:10.1016/j.jeurceramsoc.2022.06.040. S2CID 249838869. Retrieved 12 December 2023.
  2. ^ Cheng, Tianbao; Zhang, Rubing; Pei, Yongmao; He, Rujie; Fang, Daining; Yang, Yazheng (12 June 2019). "Flexural properties of carbon-carbon composites at temperatures up to 2600 °C". Materials Research Express. 6 (8). Bibcode:2019MRE.....6h5629C. doi:10.1088/2053-1591/ab23c9. S2CID 181325974. Retrieved 12 December 2023.
  3. ^ "c³harme". www.c3harme.eu.
  4. ^ Sciti, Diletta; Silvestroni, Laura; Monteverde, Frédéric; Vinci, Antonio; Zoli, Luca (2018-10-17). "Introduction to H2020 project C3HARME – next generation ceramic composites for combustion harsh environment and space". Advances in Applied Ceramics. 117 (sup1): s70–s75. Bibcode:2018AdApC.117S..70S. doi:10.1080/17436753.2018.1509822. ISSN 1743-6753.
  5. ^ Sciti, D.; Zoli, L.; Silvestroni, L.; Cecere, A.; Martino, G.D. Di; Savino, R. (2016). "Design, fabrication and high velocity oxy-fuel torch tests of a C f -ZrB 2 - fiber nozzle to evaluate its potential in rocket motors". Materials & Design. 109: 709–717. doi:10.1016/j.matdes.2016.07.090.
  6. ^ Mungiguerra, Stefano; Di Martino, Giuseppe D.; Savino, Raffaele; Zoli, Luca; Sciti, Diletta; Lagos, Miguel A. (2018-07-08). "Ultra-High-Temperature Ceramic Matrix Composites in Hybrid Rocket Propulsion Environment". 2018 International Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics. doi:10.2514/6.2018-4694. ISBN 9781624105715.
  7. ^ Sziroczak, D.; Smith, H. (2016). "A review of design issues specific to hypersonic flight vehicles". Progress in Aerospace Sciences. 84: 1–28. Bibcode:2016PrAeS..84....1S. doi:10.1016/j.paerosci.2016.04.001. hdl:1826/10119.
  8. ^ Vinci, Antonio; Zoli, Luca; Sciti, Diletta; Watts, Jeremy; Hilmas, Greg E.; Fahrenholtz, William G. (April 2019). "Mechanical behaviour of carbon fibre reinforced TaC/SiC and ZrC/SiC composites up to 2100°C". Journal of the European Ceramic Society. 39 (4): 780–787. doi:10.1016/j.jeurceramsoc.2018.11.017. ISSN 0955-2219. S2CID 139993345.
  9. ^ Mungiguerra, S.; Di Martino, G.D.; Cecere, A.; Savino, R.; Silvestroni, L.; Vinci, A.; Zoli, L.; Sciti, D. (April 2019). "Arc-jet wind tunnel characterization of ultra-high-temperature ceramic matrix composites". Corrosion Science. 149: 18–28. doi:10.1016/j.corsci.2018.12.039. ISSN 0010-938X. S2CID 139421458.
  10. ^ Zoli, L.; Sciti, D. (2017). "Efficacy of a ZrB2 –SiC matrix in protecting C fibres from oxidation in novel UHTCMC materials". Materials & Design. 113: 207–213. doi:10.1016/j.matdes.2016.09.104.
  11. ^ Zoli, L.; Vinci, A.; Silvestroni, L.; Sciti, D.; Reece, M.; Grasso, S. (2017). "Rapid spark plasma sintering to produce dense UHTCs reinforced with undamaged carbon fibres". Materials & Design. 130: 1–7. doi:10.1016/j.matdes.2017.05.029.
  12. ^ Galizia, Pietro; Failla, Simone; Zoli, Luca; Sciti, Diletta (2018). "Tough salami-inspired Cf/ZrB2 UHTCMCs produced by electrophoretic deposition". Journal of the European Ceramic Society. 38 (2): 403–409. doi:10.1016/j.jeurceramsoc.2017.09.047.
  13. ^ Vinci, Antonio; Zoli, Luca; Sciti, Diletta; Melandri, Cesare; Guicciardi, Stefano (2018). "Understanding the mechanical properties of novel UHTCMCs through random forest and regression tree analysis". Materials & Design. 145: 97–107. doi:10.1016/j.matdes.2018.02.061.
  14. ^ Zoli, L.; Medri, V.; Melandri, C.; Sciti, D. (2015). "Continuous SiC fibers-ZrB2 composites". Journal of the European Ceramic Society. 35 (16): 4371–4376. doi:10.1016/j.jeurceramsoc.2015.08.008.
  15. ^ Sciti, D.; Murri, A. Natali; Medri, V.; Zoli, L. (2015). "Continuous C fibre composites with a porous ZrB2 Matrix". Materials & Design. 85: 127–134. doi:10.1016/j.matdes.2015.06.136.
  16. ^ Sciti, D.; Pienti, L.; Murri, A. Natali; Landi, E.; Medri, V.; Zoli, L. (2014). "From random chopped to oriented continuous SiC fibers–ZrB2 composites". Materials & Design. 63: 464–470. doi:10.1016/j.matdes.2014.06.037.
  17. ^ Vinci, Antonio; Zoli, Luca; Sciti, Diletta (September 2018). "Influence of SiC content on the oxidation of carbon fibre reinforced ZrB2 /SiC composites at 1500 and 1650 °C in air". Journal of the European Ceramic Society. 38 (11): 3767–3776. doi:10.1016/j.jeurceramsoc.2018.04.064. ISSN 0955-2219. S2CID 139815518.
  18. ^ Failla, S.; Galizia, P.; Zoli, L.; Vinci, A.; Sciti, D. (March 2019). "Toughening effect of non-periodic fiber distribution on crack propagation energy of UHTC composites". Journal of Alloys and Compounds. 777: 612–618. doi:10.1016/j.jallcom.2018.11.043. ISSN 0925-8388. S2CID 139247345.
  19. ^ Galizia, P.; Zoli, L.; Sciti, D. (December 2018). "Impact of residual stress on thermal damage accumulation, and Young's modulus of fiber-reinforced ultra-high temperature ceramics". Materials & Design. 160: 803–809. doi:10.1016/j.matdes.2018.10.019. ISSN 0264-1275.
  20. ^ Zoli, Luca; Vinci, Antonio; Galizia, Pietro; Melandri, Cesare; Sciti, Diletta (2018-06-14). "On the thermal shock resistance and mechanical properties of novel unidirectional UHTCMCs for extreme environments". Scientific Reports. 8 (1): 9148. Bibcode:2018NatSR...8.9148Z. doi:10.1038/s41598-018-27328-x. ISSN 2045-2322. PMC 6002483. PMID 29904145.
  21. ^ "C3HARME".