User:E8/sandbox

From Wikipedia, the free encyclopedia

Biodiesel production is the process of producing the biofuel, biodiesel, through the chemical reactions, transesterification and esterification. This involves vegetable or animal fats and oils being reacted with short-chain alcohols (typically methanol or ethanol).

Steps in the process[edit]

The major steps required to synthesize biodiesel are as follows:

Feedstock pretreatment[edit]

If waste vegetable oil (WVO) is used, it is filtered to remove dirt, charred food, and other non-oil material often found. Water is removed because its presence causes the triglycerides to hydrolyze, giving salts of the fatty acids (soaps) instead of undergoing transesterification to give biodiesel.

Determination and treatment of free fatty acids[edit]

A sample of the cleaned feedstock oil is titrated with a standardized base solution in order to determine the concentration of free fatty acids (carboxylic acids) present in the waste vegetable oil sample. These acids are then either esterified into biodiesel, esterified into bound glycerides, or removed, typically through neutralization.

Reactions[edit]

Base-catalyzed transesterification reacts lipids (fats and oils) with alcohol (typically methanol or ethanol) to produce biodiesel and an impure coproduct, glycerol. If the feedstock oil is used or has a high acid content, acid-catalyzed esterification can be used to react fatty acids with alcohol to product biodiesel. Other methods, such as fixed-bed reactors, supercritical reactors, and ultrasonic reactors, forgo or decrease the use of chemical catalysts.

Product purification[edit]

Products of the reaction include not only biodiesel, but also byproducts, soap, glycerin, excess alcohol, and trace amounts of water. All of these byproducts must be removed, though the order of removal is process-dependent.

The density of glycerin is greater than that of biodiesel, and this property difference is exploited to separate the bulk of the glycerin byproduct. Residual methanol is typically removed through distillation and reused, though it can be washed out (with water) as a waste. Soaps can be removed or converted into acids. Any residual water must be removed from the fuel.

Reactions[edit]

Transesterification[edit]

Triglycerides (1) are reacted with an alcohol such as ethanol (2) to give ethyl esters of fatty acids (3) and glycerol (4):

R1, R2, R3 : Alkyl group.

Animal and plant fats and oils are composed of triglycerides which are esters containing three free fatty acids and the trihydric alcohol, glycerol. In the transesterification process, the alcohol is deprotonated with a base to make it a stronger nucleophile. Commonly, ethanol or methanol are used. As can be seen, the reaction has no other inputs than the triglyceride and the alcohol. Under normal conditions, this reaction will proceed either exceedingly slowly or not at all, so heat, as well as catalysts (acid and/or base) are used to speed the reaction. It is important to note that the acid or base are not consumed by the transesterification reaction, thus they are not reactants, but catalysts. Common catalysts for transesterification include Sodium hydroxide, Potassium hydroxide, Sodium methoxide, and Potassium hydroxide.

Almost all biodiesel is produced from virgin vegetable oils using the base-catalyzed technique as it is the most economical process for treating virgin vegetable oils, requiring only low temperatures and pressures and producing over 98% conversion yield (provided the starting oil is low in moisture and free fatty acids). However, biodiesel produced from other sources or by other methods may require acid catalysis which is much slower.[1] Since it is the predominant method for commercial-scale production, only the base-catalyzed transesterification process will be described below.


The alcohol reacts with the fatty acids to form the mono-alkyl ester (or biodiesel) and crude glycerol. The reaction between the biolipid (fat or oil) and the alcohol is a reversible reaction so the alcohol must be added to ensure complete conversion.

Base-catalysed transesterification mechanism[edit]

The transesterification reaction is base catalyzed. Any strong base capable of deprotonating the alcohol will do (e.g. NaOH, KOH, Sodium methoxide, etc.). Commonly the base (KOH, NaOH) is dissolved in the alcohol to make a convenient method of dispersing the otherwise solid catalyst into the oil. The ROH needs to be very dry. Any water in the process promotes the saponification reaction, thereby producing salts of fatty acids (soaps) and consuming the base, and thus inhibits the transesterification reaction. Once the alcohol mixture is made, it is added to the triglyceride. The reaction that follows replaces the alkyl group on the triglyceride in a series of steps.

The carbon on the ester of the triglyceride has a slight positive charge, and the carbonyl oxygens have a slight negative charge. This polarization of the C=O bond is what attracts the RO- to the reaction site.

                        R1
   Polarized attraction |
RO-  ————————————————>  C=O 
                        |
                        O-CH2-CH-CH2-O-C=O
                              |        |
                              O-C=O    R3
                                |
                                R2

This yields a tetrahedral intermediate that has a negative charge on the former carbonyl oxygen:

   R1
   |
RO-C-O- (pair of electrons)
   |
   O-CH2-CH-CH2-O-C=O
         |        |
         O-C=O    R3
           |
           R2

These electrons then fall back to the carbon and push off the diacylglycerol forming the ester.

   R1
   |
RO-C=O
 
+  
   -O-CH2-CH-CH2-O-C=O
          |        |
          O-C=O    R3
            |
            R2

Then two more RO groups react via this mechanism at the other two C=O groups. This type of reaction has several limiting factors. RO- has to fit in the space where there is a slight positive charge on the C=O. MeO- works well because it is small in size. As the chain length of the RO- group increases, reaction rates decrease. This effect is called steric hindrance. This effect is a primary reason the short chain alcohols, methanol and ethanol, are typically used.

There are several competing reactions, so care must be taken to ensure the desired reaction pathway occurs. Most methods do this by using an excess of RO-.

The acid-catalyzed method is a slight variant that is also affected by steric hindrance.

Production methods[edit]

Batch process[edit]

  • Preparation: care must be taken to monitor the amount of water and free fatty acids in the incoming biolipid (oil or fat). If the free fatty acid level or water level is too high it may cause problems with soap formation (saponification) and the separation of the glycerin by-product downstream.
  • Catalyst is dissolved in the alcohol using a standard agitator or mixer.
  • The alcohol/catalyst mix is then charged into a closed reaction vessel and the biolipid (vegetable or animal oil or fat) is added. The system from here on is totally closed to the atmosphere to prevent the loss of alcohol.
The reaction mix is kept just above the boiling point of the alcohol (around 70 °C, 158 °F) to speed up the reaction though some systems recommend the reaction take place anywhere from room temperature to 55 °C (131 °F) for safety reasons. Recommended reaction time varies from 1 to 8 hours; under normal conditions the reaction rate will double with every 10 °C increase in reaction temperature. Excess alcohol is normally used to ensure total conversion of the fat or oil to its esters.
  • The glycerin phase is much denser than biodiesel phase and the two can be gravity separated with glycerin simply drawn off the bottom of the settling vessel. In some cases, a centrifuge is used to separate the two materials faster.
  • Once the glycerin and biodiesel phases have been separated, the excess alcohol in each phase is removed with a flash evaporation process or by distillation. In other systems, the alcohol is removed and the mixture neutralized before the glycerin and esters have been separated. In either case, the alcohol is recovered using distillation equipment and is re-used. Care must be taken to ensure no water accumulates in the recovered alcohol stream.
  • The glycerin by-product contains unused catalyst and soaps that are neutralized with an acid and sent to storage as crude glycerin (water and alcohol are removed later, chiefly using evaporation, to produce 80-88% pure glycerin).
  • Once separated from the glycerin, the biodiesel is sometimes purified by washing gently with warm water to remove residual catalyst or soaps, dried, and sent to storage.

Supercritical process[edit]

An alternative, catalyst-free method for transesterification uses supercritical methanol at high temperatures and pressures in a continuous process. In the supercritical state, the oil and methanol are in a single phase, and reaction occurs spontaneously and rapidly.[2] The process can tolerate water in the feedstock, free fatty acids are converted to methyl esters instead of soap, so a wide variety of feedstocks can be used. Also the catalyst removal step is eliminated.[3] High temperatures and pressures are required, but energy costs of production are similar or less than catalytic production routes.[4]

Ultra- and high-shear in-line and batch reactors[edit]

Ultra- and High Shear in-line or batch reactors allow production of biodiesel continuously, semi- continuously, and in batch-mode. This drastically reduces production time and increases production volume.[citation needed]

The reaction takes place in the high-energetic shear zone of the Ultra- and High Shear mixer by reducing the droplet size of the immiscible liquids such as oil or fats and methanol. Therefore, the smaller the droplet size the larger the surface area the faster the catalyst can react.

Ultrasonic-reactor method[edit]

In the ultrasonic reactor method, the ultrasonic waves cause the reaction mixture to produce and collapse bubbles constantly. This cavitation provides simultaneously the mixing and heating required to carry out the transesterification process. Thus using an ultrasonic reactor for biodiesel production drastically reduces the reaction time, reaction temperatures, and energy input. Hence the process of transesterification can run inline rather than using the time consuming batch processing. Industrial scale ultrasonic devices allow for the industrial scale processing of several thousand barrels per day. [5]

Lipase-catalyzed method[edit]

Large amounts of research have focused recently on the use of enzymes as a catalyst for the transesterification. Researchers have found that very good yields could be obtained from crude and used oils using lipases. The use of lipases makes the reaction less sensitive to high FFA content which is a problem with the standard biodiesel process. One problem with the lipase reaction is that methanol cannot be used because it inactivates the lipase catalyst after one batch. However, if methyl acetate is used instead of methanol, the lipase is not in-activated and can be used for several batches, making the lipase system much more cost effective.[6]

See also[edit]

References[edit]

  1. ^ Dubé, Marc A, et al. (2007). “Acid-Catalyzed Transesterification of Canola Oil to Biodiesel under Single- and Two-Phase Reaction Conditions”. Energy & Fuels 21: 2450-2459. American Chemical Society. Retrieved on 2007-11-01.
  2. ^ Bunyakiat, Kunchana; Makmee, Sukunya; Sawangkeaw, Ruengwit; Ngamprasertsith, Somkiat (2006). "Continuous Production of Biodiesel via Transesterification from Vegetable Oils in Supercritical Methanol". Energy and Fuels. 20 (2). American Chemical Society: 812–817. doi:10.1021/ef050329b.{{cite journal}}: CS1 maint: date and year (link)
  3. ^ Vera, C.R. (2005-08-14). "Production of biodiesel by a two-step supercritical reaction process with adsorption refining" (PDF). 2nd Mercosur Congress on Chemical Engineering, 4th Mercosur Congress on Process Systems Engineering. Rio de Janeiro. Retrieved 2007-12-20. {{cite conference}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  4. ^ Kusdiana, Dadan. "Biodiesel fuel for diesel fuel substitute prepared by a catalyst free supercritical methanol" (PDF). Retrieved 2007-12-20. {{cite web}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  5. ^ http://www.hielscher.com/biodiesel
  6. ^ Du, Wei; Xu, Yuanyuan; Liu, Dehua; Zeng, Jing (2004). "Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors". Journal of Molecular Catalysis B: Enzymatic. 30 (3–4): 125–129. doi:10.1016/j.molcatb.2004.04.004.{{cite journal}}: CS1 maint: date and year (link)

Further reading[edit]

External links[edit]

Category:Biodiesel Category:Base catalyzed reactions