Jump to content

英文维基 | 中文维基 | 日文维基 | 草榴社区

2023 in paleomammalogy

From Wikipedia, the free encyclopedia

List of years in paleomammalogy
In paleontology
2020
2021
2022
2023
2024
2025
2026
In paleobotany
2020
2021
2022
2023
2024
2025
2026
In arthropod paleontology
2020
2021
2022
2023
2024
2025
2026
In paleoentomology
2020
2021
2022
2023
2024
2025
2026
In paleomalacology
2020
2021
2022
2023
2024
2025
2026
In paleoichthyology
2020
2021
2022
2023
2024
2025
2026
In reptile paleontology
2020
2021
2022
2023
2024
2025
2026
In archosaur paleontology
2020
2021
2022
2023
2024
2025
2026

This article records new taxa of fossil mammals of every kind that are scheduled to be described during the year 2023, as well as other significant discoveries and events related to paleontology of mammals that are scheduled to occur in the year 2023.

Afrotherians

[edit]

Proboscideans

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Stenobelodon[1]

Gen. et comb. nov

Lambert

Miocene

 United States
( Florida)

A new genus for "Amebelodon" floridanus (Leidy, 1886).

Proboscidean research

[edit]
  • Review of the systematics and evolutionary history of African proboscideans is published by Sanders (2023).[2]
  • A study on the evolution of teeth of proboscideans from East Africa over the past 26 million years is published by Saarinen & Lister (2023), who find evidence of ratchet-like mode of evolution, with periods of rapid increase in hypsodonty and loph count (probably related to episodes of increase of aridity) alternating with longer periods of relative stasis rather than reversal of these traits.[3]
  • Choudhary et al. (2023) report the first discovery of the fossil material of a mammutid (cf. Zygolophodon) from the Upper Miocene deposits of Tapar (Kutch, India), extending known temporal range of mammutids in the southern Himalayan foreland basin to ~10 million years ago.[4]
  • Fossil material of a mammutid distinct from the more basal Zygolophodon and possibly belonging to the species "Mammut" obliquelophus is described from the Upper Miocene locality of Sazak (Turkey) by Konidaris et al. (2023), representing the first record of "Mammut" in the Upper Miocene of western Asia reported to date, and interpreted by the authors as supporting the existence of a zoogeographic link enabling proboscidean interchanges between Europe and East Asia during the Late Miocene.[5]
  • Von Koenigswald, Widga & Göhlich (2023) describe fossil material of mammutids from Oregon (partial skull of Zygolophodon proavus from the Clarendonian Ironside Formation, a maxilla of a mammutid of uncertain affinities – tentatively classified as "Mammut furlongi" – from the Clarendonian Juntura Formation, and partial skull of Mammut matthewi from the Hemphillian Dalles Formation), and interpret the Miocene and Pliocene record of North American mammutid as indicating that Mammut most likely did not immigrate into North America from Eurasia but rather evolved from Zygolophodon in North America.[6]
  • Li, Chen & Wang (2023) reinterpret "Trilophodon" connexus as a member of the family Choerolophodontidae, and provisionally assign it to the genus Choerolophodon.[7]
  • Revision of the gomphothere faunas of the Miocene Linxia Basin (China) is published by Wang et al. (2023), who report the presence of three fossil assemblages of different age.[8]
  • A study on the morphology and feeding ecology of longirostrine gomphotheres from the Early–Middle Miocene of northern China is published by Li et al. (2023), who interpret Platybelodon as the first known proboscidean that evolved both grazing behavior and trunk coiling and grasping functions, making it better adapted to the open environment than other longirostrine taxa, and interpret these adaptations as eventually resulting in the feeding function shifting from the mandibular symphysis and tusks to the trunk.[9]
  • Neves et al. (2023) study carbon and oxygen isotopic signatures from samples of dentin of a specimen of Notiomastodon platensis from the Sousa municipality (Brazil) living during the Last Glacial Maximum, and interpret their findings as indicating that the studied specimen lived in a wetter environment compared to other localities from the Brazilian Intertropical Region and had mixed-feeder diet.[10]
  • Konidaris et al. (2023) describe fossil material of Deinotherium levius and Tetralophodon longirostris from the Hammerschmiede clay pit (Germany), report evidence of their feeding habits indicative of niche partitioning between the two species which made their coexistence at Hammerschmiede possible, and interpret their presence at the site (coupled with the absence of Gomphotherium at Hammerschmiede to date) as documenting the transition from the Middle Miocene trilophodont (Gomphotherium)-dominated proboscidean faunas of central Europe to the Late Miocene tetralophodont-dominated ones.[11]
  • Romano et al. (2023) estimate the body mass of Anancus arvernensis to be between 5.2 and 6 tonnes.[12]
  • Lin et al. (2023) recover complete mitogenome from a molar of a member of the genus Palaeoloxodon and partial mitochondrial sequences from another member of this genus (both from the Pleistocene of China), and interpret the studied specimens as possible representatives of a population with a large spatial span across Eurasia.[13]
  • A study on woolly mammoth genomes, identifying genetic variants associated with hair and skin development, fat storage and metabolism, and immune system function that had become fixed in the woolly mammoth lineage, is published by Díez-del-Molino et al. (2023).[14]
  • A study on the accumulation of woolly mammoth bones from the Upper Paleolithic site Kostenki 14 (Markina Gora, Voronezh Oblast, Russia), aiming to assess relations between the body size of Kostenki mammoths, the state of their population and the timeframe of bone assemblage accumulation, is published by Petrova et al. (2023), who interpret their findings as indicative of relatively long-term inhabitation of the studied area by mammoths and permanent visitation of the site.[15]
  • Evidence from tooth enamel of a woolly mammoth from the Upper Paleolithic Kraków Spadzista site (Poland), interpreted as indicating that the studied mammoth grazed in southern Poland in winter time and likely moved 250–400 km northwards during summer throughout at least 12–13 years of its adult life, is presented by Kowalik et al. (2023).[16]
  • Cherney et al. (2023) study steroid hormone concentrations in woolly mammoth tusk dentin, and report evidence periodic increases in testosterone, interpreted as indicating that male mammoths experienced episodes of musth similar to those occurring in extant African elephants.[17]
  • Larramendi (2023) provides a formula for estimating tusk weight in proboscideans and conducts a review of tusk size evolution in Proboscidea.[18]

Sirenians

[edit]

Sirenian research

[edit]
  • Evidence of adaptation of motor-sensorial systems which were originally associated with tooth innervation to innervation of novel keratinized structures in sirenians, based on data from the study of extant and extinct sirenians, is presented by Hautier et al. (2023).[19]
  • Probable new specimen of Prototherium ausetanum, complementing the available information of the anatomy of that species, is described from the Eocene (Bartonian) limestone south of Sant Vicenç de Castellet (Catalonia, Spain) by Voss et al. (2023).[20]

Other afrotherians

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Hadrogeneios[21]

Gen. et sp. nov

Gheerbrant

Paleocene

Ouled Abdoun Basin

 Morocco

A basal member of Paenungulatomorpha. The type species is H. phosphaticus.

Miscellaneous afrotherian research

[edit]
  • A study on teeth and affinities of Qarunavus meyeri is published by Kampouridis et al. (2023), who place Qarunavus in the family Ptolemaiidae, and interpret the eruption sequence of the permanent teeth of Qarunavus as potentially supporting the placement of Ptolemaiida within Afrotheria.[22]
  • Lihoreau et al. (2023) describe a tooth of an embrithopod belonging to the genus Palaeoamasia from the Eocene Lopar Sandstone (Croatia), extending known geographic range of members of this genus, and interpret this finding as consistent with the existence of the isolated Balkanatolian landmass which was isolated from Western Europe prior to the Grande Coupure.[23]

Euarchontoglires

[edit]

Primates

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Anadoluvius[24]

Gen. et comb. nov

Valid

Sevim-Erol et al.

Miocene

 Turkey

An ape belonging to the subfamily Homininae. The type species is "Ouranopithecus" turkae Güleç et al. (2007).

Ashaninkacebus[25]

Gen. et sp. nov

Marivaux et al.

Paleogene-Neogene

 Brazil

Probably a member of the family Eosimiidae. The type species is A. simpsoni.

Mytonius williamsae[26]

Sp. nov

Kirk et al.

Eocene

Tornillo Basin

 United States
( Texas)

A member of the family Omomyidae.

Ourayia coverti[26]

Sp. nov

Kirk et al.

Eocene

Tornillo Basin

 United States
( Texas)

A member of the family Omomyidae.

Palaeohodites[27]

Gen. et sp. nov

Rust et al.

Eocene

Nadu Formation

 China

A member of Adapiformes belonging to the family Ekgmowechashalidae. The type species is P. naduensis.

Saskomomys[28]

Gen. et sp. nov

Valid

Perry, Dutchak & Theodor

Eocene (Uintan)

Cypress Hills Formation

 Canada
( Saskatchewan)

A member of the family Omomyidae belonging to the subfamily Omomyinae. The type species is S. lindsayorum.

Sungulusimias[29]

Gen. et sp. nov

Valid

Métais et al.

Eocene

 Turkey

A member of the family Eosimiidae. The type species is S. unayae.

Theropithecus oswaldi ecki[30]

Ssp. nov

Getahun, Delson & Seyoum

Pliocene

Hadar Formation

 Ethiopia

A member of Papionini.

Trogolemur storeri[28]

Sp. nov

Valid

Perry, Dutchak & Theodor

Eocene (Uintan)

Cypress Hills Formation

 Canada
( Saskatchewan)

A member of the family Omomyidae belonging to the subfamily Anaptomorphinae.

Primate research

[edit]
  • Evidence from the navicular morphology, interpreted as indicating that early euprimates displayed a diverse array of locomotor adaptations early on their evolution, is presented by Monclús-Gonzalo et al. (2023).[31]
  • A study on the phylogeny and evolution of notharctines known from Wyoming is published by Gingerich (2023), who considers changes of the notharctine diversity to be related to Eocene climate changes.[32]
  • A study on evolutionary changes to temporal lobe size relative to brain size in fossil Old World monkeys is published by Pearson & Polly (2023), who interpret their finding as indicative of several cerebral reorganisations in the evolutionary history of the Old World monkeys, with the most noticeable change coinciding with environmental changes in the Late Eocene and Early Oligocene.[33]
  • A study on tooth chipping patterns in Aegyptopithecus zeuxis, Apidium phiomense, Catopithecus browni, Parapithecus grangeri, Propliopithecus ankeli and Propliopithecus chirobates from the Fayum Depression (Egypt) is published by Towle, Borths & Loch (2023), who interpret their findings as indicative of a predominantly soft fruit diet of the studied primates.[34]
  • Pickford, Gommery & Ingicco (2023) describe a probable Early Pliocene macaque molar from the Red Crag Formation (United Kingdom), representing one of the oldest and northernmost records of the genus in Europe reported to date.[35]
  • A study on tooth microwear in Macaca majori is published by Plastiras et al. (2023), who interpret their findings as indicating that M. majori likely fed on harder foods and occupied a different dietary niche compared to its mainland fossil relatives.[36]
  • Proffitt et al. (2023) report that, while cracking nuts, extant crab-eating macaques unintentionally produce flakes that fall within the technological range of artifacts made by early hominins, and caution that such flakes may be misidentified as intentional products if found in Plio-Pleistocene sites.[37]
  • Post et al. (2023) recommend the use of Victoriapithecus and Ekembo as more suitable outgroups in the studies of the phylogenetic relationships of apes (including fossil hominins) than members of the genera Papio and Colobus.[38]
  • Kikuchi (2023) attempts to determine the body mass of Nacholapithecus kerioi, and considers it to be an arboreal primate.[39]
  • Review of the Miocene ape systematics is published by Urciuoli & Alba (2023), who discuss the problems affecting the studies of phylogenetic relationships and evolutionary history of Miocene apes.[40]
  • Evidence from the Moroto II site (Uganda), indicating that Miocene apes from Moroto II (including Morotopithecus) shared locomotor traits with living apes and lived in seasonally dry woodlands with abundant C4 grasses, is presented by MacLatchy et al. (2023).[41]
  • Pugh et al. (2023) reconstruct the face of Pierolapithecus catalaunicus, and interpret its morphology as most consistent with a phylogenetic placement as a stem hominid.[42]
  • A study aiming to determine absolute crown strength and bite force of the lower postcanine teeth of Gigantopithecus blacki is published by Yi et al. (2023), who report evidence of dental specialization which might represent an adaptation to processing mechanically challenging foods.[43]
  • A study on the distinctiveness of Miocene dryopithecines from the Iberian Peninsula is published by Zanolli et al. (2023), who argue that teeth of Pierolapithecus, Anoiapithecus, Dryopithecus and Hispanopithecus show morphological differences consistent with their attribution to different genera.[44]
  • Evidence from oxygen isotopic compositions of tooth enamel, interpreted as indicating that late Pleistocene/early Holocene orangutans from Borneo lived in drier environments than both modern orangutans and late Pleistocene orangutans from Sumatra, is presented by Smith et al. (2023).[45]
  • A study comparing the dietary strategies of Pleistocene orangutans and Homo erectus from Sangiran (Java, Indonesia) is published by Kubat et al. (2023), who interpret their findings as indicating that H. erectus exploited varied food sources and was less dependent on variations in seasonal food availability than orangutans.[46]
  • The first specimen of Ouranopithecus macedoniensis with upper deciduous teeth is described from the Ravin de la Pluie locality in Axios Valley (Greece) by Koufos et al. (2023).[47]
  • A study on the ulnae of Hispanopithecus, Danuvius, 17 fossil hominin specimens and extant apes and humans is published by Meyer et al. (2023), who find the studied ulna of a specimen of Sahelanthropus tchadensis to fall within the knuckle-walking morphospace.[48]
  • Evidence from the study of a sample of specimens of 4 extinct (Ekembo heseloni, Australopithecus sediba, Homo naledi, Neanderthals) and 15 extant primate species, indicating that machine learning methods have the potential for aiding taxon identification and the interpretation of the locomotor behavior of fossil hominoid specimens, is presented by Vanhoof et al. (2023).[49]

General paleoanthropology

[edit]
  • A study on the hominin habitat preferences over the past 3 million years is published by Zeller et al. (2023), who find that earliest hominins predominantly lived in environments such as grassland and dry shrubland, while later hominins adapted to a broader range of environments, and argue that members of the genus Homo may have preferentially selected areas with more diverse habitats.[50]
  • Hatala, Gatesy & Falkingham (2023) find that longitudinally arched footprints are not necessarily indicating that the hominins which produced them had longitudinally arched feet, but rather that such footprints are created through a pattern of foot kinematics that is characteristic of human walking; the authors consider Pleistocene tracks from Ileret (Kenya) to be the earliest known evidence for fully modern human-like bipedal kinematics, while tracks from Laetoli (Tanzania) show only partial evidence of the characteristic human walking style.[51]
  • Alger et al. (2023) present a model of the evolution of food production and sharing in early hominins across diverse mating systems, and propose that food sharing in early hominin populations occurred between unrelated adults before the emergence of extensive grandparenting, cooking and hunting.[52]
  • Plummer et al. (2023) report the discovery of 3.032–2.595 million-years-old fossil material of Paranthropus and Oldowan stone tools from the Nyayanga site (Homa Peninsula, Kenya), expanding known geographic range of both Paranthropus and Oldowan tools, and providing evidence that hominins were already using tools to process soft and hard plant tissues and to butcher animals, including large animals such as hippopotamids, at the Oldowan's inception;[53] in a subsequent study Key & Proffitt (2023) apply optimal linear estimation modeling to the range of dates presented for the Nyayanga site, and find the emergence of the Oldowan to fall within the range of 2.622–3.436 million years ago, on account of the uncertainty surrounding Nyayanga's age.[54]
  • New fossil material of infant and juvenile specimens of Paranthropus robustus, providing evidence of differences in the early craniofacial development between P. robustus and Australopithecus africanus, is described from southern African sites of Kromdraai and Drimolen by Braga et al. (2023), who interpret this finding as consistent with a close relationship between Paranthropus and Homo.[55]
  • A study comparing the environments inhabited by Paranthropus boisei and early members of the genus Homo at East Turkana (Kenya) is published by O'Brien, Hebdon & Faith (2023), who report that early Homo co-occurred with bovid assemblages indicative of a broader range of environments than P. boisei, and interpret their findings as supporting the interpretation of P. boisei as an ecological specialist and of early Homo as a generalist.[56]
  • A study on the affinities of the hominin specimen KNM-ER 1500 from East Turkana (Kenya) is published by Ward et al. (2023), who interpret the anatomy of this specimen as supporting its attribution to the species Paranthropus boisei, confirming the presence of significant dimorphism of the size of the postcranial skeleton in this species.[57]
  • Alemseged (2023) reexamines the paleobiology of Australopithecus and its significance in human evolution.[58]
  • A study on the anatomy and phylogenetic affinities of Australopithecus sediba, aiming to determine whether A. sediba and Australopithecus africanus were sister taxa, is published by Mongle, Strait & Grine (2023), who report that they could not reject the hypothesis that A. sediba shared its closest phylogenetic affinities with the genus Homo.[59]
  • A three-dimensional model of bones and musculature of the pelvis and leg of Australopithecus afarensis is presented by O'Neill, Nagano & Umberger (2023).[60]
  • Wiseman (2023) presents a reconstruction of muscular configuration in the pelvis and lower limb of "Lucy", and interpret her finding as indicating that "Lucy" was capable of producing an erect posture, but also that the knee of this individual might have been suited to a range of movement types beyond those observed in modern humans.[61]
  • Hamilton, Copeland & Nelson (2023) use a strontium isotope method to identify sex biases in dispersal of Australopithecus africanus and Australopithecus/Paranthropus robustus, and interpret their findings as supporting the existence of male philopatry and female dispersal in both species, with Australopithecus/Paranthropus robustus showing greater differences between presumed males and females compared to A. africanus.[62]
  • Delagnes et al. (2023) report the discovery of stone tool assemblages from a new site complex from the Shungura Formation (Ethiopia), representing the first example of multiple, well-defined hominin occupation phases in the Shungura Formation and providing evidence that hominins were able to repeatedly exploit the studied area during the Early Pleistocene in spite of lack of abundant local raw materials suitable for stone tool manufacture.[63]
  • Evidence from the Melka Kunture site-complex (Ethiopia) interpreted as indicating that hominins were living in areas at 2000 m of altitude at least 2 million years ago is presented by Muttoni et al. (2023).[64]
  • Mussi et al. (2023) identify the infant mandible from level E at Garba IV site (Melka Kunture, Ethiopia) as belonging to the species Homo erectus, determine this mandible to be approximately 2 million-years-old (making it one of the earliest known fossils of H. erectus), and determine the presence of earliest known Acheulean tool assemblage from slightly younger strata from the same site;[65] the conclusions of Muttoni et al. (2023) and Mussi et al. (2023) about the age of the Oldowan and early Acheulean material from the Melka Kunture site-complex are subsequently contested by Gossa et al. (2024).[66]
  • Beaudet & de Jager (2023) provide evidence of primitive organization of the Broca's area in a 1.9-million-years-old probable member of the genus Homo from Koobi Fora (Kenya).[67]
  • Pobiner, Pante & Keevil (2023) report the discovery of likely cut marks on a 1.45-million-years-old hominin tibia shaft from the Okote Member of the Koobi Fora Formation (Kenya).[68]
  • Evidence from the Simbiro III site (Melka Kunture, Ethiopia), interpreted as indicating that hominins living in this area more than 1.2 million years produced standardized, large tools with sharp cutting edges in a stone-tool workshop, exploiting an accumulation of obsidian cobbles by a meandering river, is presented by Mussi et al. (2023).[69]
  • Muller et al. (2023) report new data about a large sample of stone balls from the 'Ubeidiya site (Israel), interpreted as indicative of the existence of a complex formal technology used for intentional production of symmetrical sphere-like objects by Early Acheulean hominins.[70]
  • A study on the temporal spacing in the Asian fossil hominin record is published by Roberts et al. (2023), who argue that, in spite of their late persistence, the temporal range of Homo floresiensis and Homo luzonensis is not outside of the expected temporal range for Homo erectus.[71]
  • A study on the provenance of the hominin fossils from Trinil (Java, Indonesia) found during the 1891–1908 excavations is published by Pop et al. (2023), who interpret their findings as indicating that the age of the femur which caused Homo erectus to be given its name (Femur I) is uncertain and might be as young as ~31,000 years, as well as indicating that the taxonomic attribution of this specimen is uncertain, for it might be a bone of an individual belonging to the species Homo erectus, Homo sapiens or a Denisovan.[72]
  • Berger et al. (2023) describe possible evidence of burials of bodies of individuals of Homo naledi from the Dinaledi subsystem of the Rising Star cave (South Africa),[73] while Berger et al. (2023) report the discovery of markings within the Dinaledi subsystem of the Rising Star Cave, interpreted by the authors as abstract patterns and shapes produced by Homo naledi;[74][75] their conclusions are subsequently contested by Martinón-Torres et al. (2023) and Foecke, Queffelec & Pickering (2024), who find the evidence presented not compelling enough to indicate that H. naledi buried their dead and produced rock art in the Rising Star Cave system.[76][77]
  • Rodríguez et al. (2023) determine that Epivillafranchian sabre-toothed felids from southern Europe abandoned carcasses with a nutrient content so high that scavenging was a reliable food procurement strategy for hominins, provided that the hominins foraged in groups strong enough to chase giant hyenas away from the carcasses;[78] a subsequent study published by Mateos, Hölzchen & Rodríguez (2023) indicates that the carnivore turnover during the Epivillafranchian-Galerian transition (including the extinction of Megantereon and the appearance of Homotherium latidens) coupled with reduced ecosystem productivity during the cold intervals made the coexistence of hominin groups with giant hyenas in competition for carrion no longer viable, resulting in the extinction of Pachycrocuta brevirostris.[79]
  • Margari et al. (2023) provide evidence of pronounced climate variability in Europe during a glacial period ~1.154 to ~1.123 million years ago, culminating in extreme glacial cooling, and argue that these conditions led to the depopulation of Europe.[80]
  • Evidence from present-day human genomes, interpreted as indicative of a reduction in the population size of human ancestors to about 1000 breeding individuals between around 930,000 and 813,000 years ago, is presented by Hu et al. (2023).[81]
  • Barham et al. (2023) describe interlocking logs and wood tools from the Kalambo Falls site (Zambia), ranging from approximately 476,000 years old to approximately 324,000 years old, and providing evidence of diversity of forms of the studied structures and the capacity of hominins that made them to shape tree trunks into large combined structures.[82]
  • Konidaris et al. (2023) describe a specimen of Hippopotamus antiquus from the new Middle Pleistocene locality Marathousa 2 in the Megalopolis Basin (Greece), preserved with cut marks interpreted as evidence of butchering of the carcass by hominins.[83]
  • Cut mark evidence interpreted as indicative of systematic exploitation of beavers by hominins approximately 400,000 years ago is reported from the Bilzingsleben site (Germany) by Gaudzinski-Windheuser, Kindler & Roebroeks (2023).[84]
  • A study on the morphology of the mandible of a 300,000-years old hominin specimen from Hualongdong (China), whose skull was first described by Wu et al. (2019),[85] is published by Wu et al. (2023), who report the presence of a combination of features resembling those of Late Pleistocene hominins and recent modern humans as well as features resembling those of Middle Pleistocene hominins, representing the first record of such a mosaic pattern in a late Middle Pleistocene hominin from East Asia, and report that the studied mandible did not possess a true chin.[86]
  • A study on a double-pointed stick from Schöningen (Germany), providing evidence of development of sophisticated woodworking techniques by hominins living ca. 300,000 years ago, is published by Milks et al. (2023).[87]
  • A study on the mandibles of hominins from the Sima de los Huesos site (Spain) is published by Quam et al. (2023), who argue that hominins from Sima de los Huesos should not be assigned to the species Homo heidelbergensis and that they were more closely related to (but distinct from) Neanderthals, indicating the presence of at least two different evolutionary lineages of hominins in Europe during the middle Pleistocene.[88]
  • Studies on the morphology of the long bones of legs of hominins from the Sima de los Huesos site are published by Rodríguez et al. (2023), who report that the tibiae and fibulae of the studied hominins overall resemble those of Neanderthals more than those of other middle Pleistocene hominins (though the tibiae were longer than those of Neanderthals, possibly resulting in better locomotor efficiency)[89] and by Carretero et al. (2023), who report archaic pattern of femoral morphology in the studied hominins and argue that two femora from the Sima de los Huesos site originally identified as bones of men might have actually been bones of women, potentially indicating that large-bodied women were common in archaic human species.[90]
  • Brand, Colbran & Capra (2023) use machine-learning algorithm to identify putative archaic splice-altering variants in genomes of three Neanderthals and a Denisovan, and report that variants which don't also occur in modern humans are enriched in genes that contribute to phenotypic differences among hominins.[91]
  • Evidence indicating that patterns of interbreeding between Neanderthals and Denisovans correlated with climate and environmental changes in central Eurasia is presented by Ruan et al. (2023).[92]
  • Review of the research on the phenotype of Denisovans, their population history and interactions with other human groups is published by Peyrégne, Slon & Kelso (2023).[93]
  • Bacon et al. (2023) report evidence from the carbon and oxygen isotope composition of teeth of the Denisovan individual from the Cobra Cave (Laos) interpretet as indicating that this individual relied on food resources from mixed to open landscapes, and argue that Homo sapiens might have been better adapted to exploit rainforest resources compared to Denisovans.[94]
  • A study comparing the evolution of brain shape in humans and other primates is published by Sansalone et al. (2023), who determine that strong covariation between different areas of the brain in Neanderthals and modern humans evolved under higher evolutionary rates than in any other primate.[95]
  • A study on an accumulation of crania of large mammals in Level 3 of the Cueva Des-Cubierta (Madrid Region, Spain), apparently processed by Neanderthals, is published by Baquedano et al. (2023), who interpret this accumulation as a likely symbolic practice of Neanderthals.[96]
  • Evidence from the Eemian Neumark-Nord 1 site (Germany), interpreted as indicative of systematic targeting and processing of straight-tusked elephants by Neanderthals, is presented by Gaudzinski-Windheuser et al. (2023);[97] in a subsequent study Gaudzinski-Windheuser, Kindler & Roebroeks (2023) identify elephant remains from the Gröbern and Taubach sites (Germany) with butchering patterns similar to those from Neumark-Nord, and interpret these findings as indicating that extended elephant exploitation was a widespread Neanderthal practice in the northern European plain during the early part of the Last Interglacial.[98]
  • Marquet et al. (2023) report evidence of Neanderthal engravings at La Roche-Cotard (France) interpreted as the earliest Neanderthal engravings on cave walls found to date.[99]
  • Kozowyk, Baron & Langejans (2023) report that aceramic birch tar production techniques used by Neanderthals cannot be reliably identified with current methods of distinguishing ceramic tar production processes using gas chromatography-mass spectrometry.[100]
  • Kozowyk, Fajardo & Langejans (2023) report that the production process of birch tar in stone chambers with a technique likely used by Neanderthals becomes more complex with the increase of the number of concurrent production assemblies, and explore possible implications of the complexity of the scaled-up production for the knowledge of the cognitive and behavioural capacities of Neanderthals.[101]
  • Fajardo, Kozowyk & Langejans (2023) evaluate the complexity of the Paleolithic tar production processes, and interpret their findings as indicating that Neanderthals might have had technical cognition analogous to that of modern humans.[102]
  • The most extensive collection of Neanderthal remains from the northeastern Mediterranean Iberia reported to date is described from Simanya Gran (the main gallery of the Simanya cave) by Morales et al. (2023).[103]
  • Russo et al. (2023) report the discovery of a cave lion specimen from Siegsdorf (Germany) preserved with hunting lesions (a partial puncture and possible drag marks) and butchery marks, interpreted as the earliest evidence of Neanderthals hunting cave lions with wooden spears, and cave lion remains from the Unicorn Cave with cut marks consistent with those generated during skinning, interpreted as the earliest evidence of the utilization of a cave lion pelt by Neanderthals.[104]
  • Abbas et al. (2023) report the presence of Late Quaternary wetland sediments at the Wadi Hasa, Gregra and Wadi Gharandal areas in the Jordan desert, and interpret their findings as indicating that during the Marine Isotope Stage 5 the Levant was a well-watered route for human dispersal out of Africa.[105]
  • Freidline et al. (2023) report the discovery of new fossil material of Homo sapiens from the Tam Pà Ling cave (Laos), providing evidence of an early dispersal of Homo sapiens into Southeast Asia by at least approximately 70,000 years ago.[106]
  • Bacon et al. (2023) study non-figurative signs associated with images of animals in European caves which were produced by Upper Paleolithic humans, and interpret those signs as an early form of writing used to convey seasonal behavioural information about prey animals.[107]
  • Evidence from genomes of people from sub-Saharan African populations, interpreted as indicative of multiple migration events of anatomically modern humans out of Africa, of bidirectional gene flow between Neanderthals and anatomically modern humans, and of deleterious interactions between Neanderthal and modern human alleles consistent with incipient speciation, is presented by Harris et al. (2023).[108]
  • A study on the Neanderthal ancestry in modern human populations across space and time is published by Quilodrán et al. (2023), who interpret their findings as indicating that the greater Neanderthal ancestry in human populations from eastern Eurasia compared to western Eurasia was caused by the expansion of Neolithic/Chalcolithic farmers (carrying less Neanderthal DNA than Paleolithic hunter-gatherers) approximately 10,000 years before present, as before that event the level of Neanderthal ancestry in human populations from western Eurasia was higher than in eastern Eurasia.[109]
  • Gicqueau et al. (2023) identify an ilium of an anatomically modern human baby found among Neanderthal remains from the Châtelperronian layers in the Grotte du Renne (France), and explore different hypotheses about the studied finding, including interpretations of the finding as possible evidence that Neanderthals and anatomically modern humans which either coexisted in mixed groups or alternately occupied the same sites were makers of the Châtelperronian.[110]
  • A study on the productivity of European ecosystems during the Marine Isotope Stage 3 is published by Vidal-Cordasco et al. (2023), who report evidence of long coexistence of Neanderthals and Homo sapiens in the areas with high and stable ecosystem productivity, as well as evidence of disappearance of Neanderthals before or shortly after the arrival of Homo sapiens in the areas with low or unstable ecosystem productivity.[111]
  • A study on the environmental changes in the Lake Baikal region during the Marine Isotope Stage 3, as indicated by palynological data, is published by Shichi et al. (2023), who find that the dispersal of Homo sapiens into Baikal Siberia coincided with climate changes resulting in warm and humid conditions and vegetation changes.[112]
  • Rigaud et al. (2023) report the discovery of an approximately 42,000-year-old pendant found at the Paleolithic site of Tolbor-21 (Mongolia), interpreted as a phallus-like representation and providing evidence of production of three-dimensional images of the human body at the time of early dispersals of Homo sapiens in Eurasia.[113]
  • Evidence from genomes of two 36,000–37,000-year-old individuals from Buran-Kaya III (Crimea), interpreted as indicative of the closest similarity of the studied individuals to Gravettian-associated individuals living several thousand years later in southwestern Europe, as well as indicating that the population turnover in Europe after 40,000 years ago involved admixture with pre-existing European populations, is presented by Bennett et al. (2023).[114]
  • Fragment of an ammonite with modifications indicative of intentional carving is described from the c. 36,200-year-old strata from the Grotte des Gorges (Jura, France) by d'Errico et al. (2023), who interpret the finding as modified to represent the head of a caniform carnivoran, and produced by the craftsman emulating figurines made of mammoth ivory, but also introducing substantial technical, thematic and stylistic innovations.[115]
Ancestry modelling of hunter-gatherers from 14 to 5.2 ka and their allele frequencies on phenotypic SNPs[116]
  • Posth et al. (2023) study genomes of hunter-gatherers from western and central Eurasia, spanning between 35,000 and 5,000 years ago, finding that individuals associated with the Gravettian culture across Europe were not a biologically homogeneous population (with some individuals from western Europe having a genetic ancestry profile resembling that of the individuals associated with the Aurignacian culture), reporting that human populations with this ancestry profile survived in southwestern Europe during the Last Glacial Maximum and subsequently re-expanded northeastward, and finding evidence of replacement of human groups in southern Europe around the time of the Last Glacial Maximum.[116]
  • Evidence from impact-related fractures of projectiles from the Maisières-Canal site (Belgium), interpreted as indicating that spearthrower was used 31,000 years ago for launching projectiles armed with tanged flint points from the studied sample, is presented by Coppe, Taipale & Rots (2023).[117]
  • Villalba-Mouco et al. (2023) present genome-wide data from a 23,000-year-old Solutrean-associated individual from Cueva del Malalmuerzo (Spain), carrying genetic ancestry interpreted as directly connecting earlier Aurignacian-associated individuals with post-Last Glacial Maximum Magdalenian-associated ancestry in western Europe.[118]
  • Pigati et al. (2023) reevalute the age of human footprints from the White Sands National Park (New Mexico, United States) originally described by Bennett et al. (2021),[119] and interpret their findings as supporting the presence of humans in North America during the Last Glacial Maximum.[120]
  • Evidence from blood residues from Paleoamerican stone tools from North and South Carolina, indicative of exploitation of extinct megafauna by Clovis and other Paleoamerican cultures in the Carolinas, is presented by Moore et al. (2023).[121]
  • A study on the functional performance of hafted Clovis knife replicas is published by Mika et al. (2023), who interpret their findings as indicating that the use of hafted technologies may have reduced the impact that the anatomical variation between hands of different individuals had on a tools' performance, and removed evolutionary selective pressures associated with the use of flaked stone tools.[122]
  • Evidence interpreted as indicating that three giant sloth osteoderms from the Santa Elina rock shelter (Brazil) were intentionally modified into artefacts during the Last Glacial Maximum, before fossilization of the bones, is presented by Pansani et al. (2023).[123]
  • Evidence of the use of plant-based red colourant by Natufians is reported from the Kebara Cave site (Israel) by Davin, Bellot-Gurlet & Navas (2023).[124]
  • A study on the Magdalenian rock art from the Atxurra Cave (Spain) is published by Garate et al. (2023), who interpret the studied rock art as indicative of planning prior to artistic production, as well as adapted to be seen by a third person from different positions.[125]
  • A study on genomic data from remains of humans from Poland, Romania and Ukraine living before and after the Neolithic transition is published by Mattila et al. (2023), who report evidence indicative of the existence of an admixture cline between genetically differentiated groups from Central Europe and Siberia before Neolithic, as well as evidence of stronger genetic continuity after the Neolithic transition in the Dnieper Valley region than in the areas further west.[126]
  • Evidence from a high-coverage genome of Ötzi, interpreted as indicative of descent from both early Neolithic European farmers (who in turn were descendants of early Anatolian farmers) and European hunter-gatherers (with the admixture between these groups happening approximately 4880–4400 years BCE) but without any evidence for Steppe-related ancestry, as well as indicative of a rather dark skin (as also displayed by the actual mummy) and possibly also of male-pattern baldness, is presented by Wang et al. (2023).[127]
  • Lenssen-Erz et al. (2023) report results of the analysis of the Late Stone Age engravings of animal tracks and human footprints from the Doro! nawas mountains (Namibia) by Ju/’hoansi tracking experts, providing evidence of inclusion of engravings of tracks of a number of animal species that don't occur in the region in the present, and indicating that the engravings are not generic forms, include markers of sex and age, and reveal divergent preferences and priorities of the engravers in the depiction of animal tracks and human footprints.[128]
  • A study of ancient DNA supports or confirms[129] that recent human evolution to resist infection of pathogens also increased inflammatory disease risk in post-Neolithic Europeans over the last 10,000 years, estimating nature, strength, and time of onset of selections.[130]
  • Archaeologists report the earliest evidence of bow and arrow use outside Africa (see also 12 Jun 20)~54,000 years ago in France, showing the earliest known H. sapiens to migrate into Neandertal territories used these technologies.[131]
Estimated sequence of local cortical expansion from the last common ancestor of rodents and primates to Homo[132] (more)
Best models for the human evolutionary origins[133]

Rodents

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Anchitheriomys buceei[139]

Sp. nov

Valid

May & Brown

Miocene (Barstovian)

Lagarto Formation

 United States
( Texas)

A member of the family Castoridae belonging to the subfamily Anchitheriomyinae.

Aurimys[140]

Gen. et sp. nov

Valid

Samuels, Calede & Hunt

Miocene (Arikareean)

John Day Formation

 United States
( Oregon)

A member of the family Heteromyidae belonging to the subfamily Dipodomyinae. The type species is A. xeros.

Caviocricetus guenekko[141]

Sp. nov

Valid

McGrath et al.

Miocene

 Chile

A member of Caviomorpha belonging to the group Pan-Octodontoidea.

Deperetomys dingusi[142]

Sp. nov

Valid

Martin, Kelly & Holroyd

Late Oligocene or early Miocene

John Day Formation

 United States
( Oregon)

A cricetodontine-like muroid rodent.

Dudumus berggreni[141]

Sp. nov

Valid

McGrath et al.

Miocene

 Chile

A member of Caviomorpha belonging to the group Pan-Octodontoidea.

Ellesmereomys[143]

Gen. et sp. nov

Valid

Martin & Zakrzewski

Pliocene

 Canada
( Nunavut)

A member of the family Cricetidae belonging to the subfamily Baranomyinae. The type species is E. haringtoni.

Eopetes[144]

Gen. et sp. nov

Li et al.

Eocene

Keziletuogayi Formation

 China

A member of the family Sciuridae belonging to the subfamily Sciurinae. The type species is E. irtyshensis.

Hesperopetes mccorquodalei[145]

Sp. nov

Valid

Bell, Meyer & Storer

Oligocene

Cypress Hills Formation

 Canada
( Saskatchewan)

A member of the family Sciuridae.

Hystrix kayae[146]

Sp. nov

Halaçlar et al.

Miocene

 Turkey

A species of Hystrix.

Hystrix velunensis[147]

Sp. nov

Valid

Czernielewski

Pliocene

 Poland

A species of Hystrix. Announced in 2022; the final article version was published in 2023.

Junggarisciurus[144]

Gen. et sp. nov

Li et al.

Eocene

Keziletuogayi Formation

 China

A member of the family Sciuridae belonging to the subfamily Sciurinae. The type species is J. jeminaiensis.

Karakoromys conjunctus[148]

Sp. nov

Xu et al.

Oligocene

Ulantatal Formation

 China

A gundi.

Microtodon hoyensis[149]

Sp. nov

Kelly & Martin

Miocene

 United States
( Nevada)

A cricetid rodent.

Miorhizomys gigas[150]

Sp. nov

Valid

Flynn et al.

Miocene

Zhaotong Formation

 China

A member of the family Spalacidae belonging to the subfamily Rhizomyinae.

Mus absconditus[151]

Sp. nov

Valid

Flynn & Kimura

Miocene

 Pakistan

A species of Mus.

Myospalax convexus[152]

Sp. nov

Valid

Golovanov & Zazhigin

Early Pleistocene

Kochkovo Formation

 Russia

A species of Myospalax.

Myospalax myospalax krukoveri[152]

Ssp. nov

Valid

Golovanov & Zazhigin

Middle Pleistocene

 Russia

A subspecies of the Siberian zokor.

Notomys magnus[153]

Sp. nov

Valid

Vakil et al.

Middle Pleistocene to Holocene

 Australia

A hopping mouse.

Octomys rosiae[154]

Sp. nov

Valid

Verzi et al.

Holocene

 Argentina

A species of Octomys.

Palaeocavia humahuaquense[155]

Sp. nov

Candela et al.

Miocene

Maimará Formation

 Argentina

Pedomys javaensis[156]

Sp. nov

Martin & Fox

Early Pleistocene

 United States
( South Dakota)

A relative of the prairie vole.

Pithanotomys? solisae[155]

Sp. nov

Candela et al.

Miocene

Maimará Formation

 Argentina

Prodistylomys mongoliensis[157]

Sp. nov

Valid

Oliver et al.

Miocene

 Mongolia

A gundi belonging to the subfamily Distylomyinae.

Prodistylomys taatsinius[157]

Sp. nov

Valid

Oliver et al.

Miocene

 Mongolia

A gundi belonging to the subfamily Distylomyinae.

Prosiphneus razdoleanensis[152]

Sp. nov

Valid

Golovanov & Zazhigin

Early Pleistocene

Kochkovo Formation

 Russia

A member of the family Spalacidae belonging to the subfamily Myospalacinae.

Protansomys amplius[158]

Sp. nov

Valid

Meyer, Storer & Gilbert

Oligocene (Orellan)

Cypress Hills Formation

 Canada
( Saskatchewan)

A member of the family Aplodontiidae.

Rattus baoshanensis[159]

Sp. nov

Chang et al.

Pliocene

Yangyi Formation

 China

A species of Rattus.

Sayimys fuhaiensis[160]

Sp. nov

Valid

Flynn et al.

Miocene

Halamagai Formation

 China

A gundi.

Sayimys linxiacus[160]

Sp. nov

Valid

Flynn et al.

Miocene

Dongxiang Formation

 China

A gundi.

Sciurion ikimekooyensis[145]

Sp. nov

Valid

Bell, Meyer & Storer

Oligocene

Cypress Hills Formation

 Canada
( Saskatchewan)

A member of the family Sciuridae.

Sciurion oligocaenicus[145]

Sp. nov

Valid

Bell, Meyer & Storer

Oligocene

Cypress Hills Formation

 Canada
( Saskatchewan)

A member of the family Sciuridae.

Yuomys dawai[161]

Sp. nov

Valid

Ni & Li in Ni et al.

Eocene (Irdinmanhan)

Gemusi Formation

 China

A member of Hystricognathi belonging to the family Yuomyidae.

Yuomys gemuensis[161]

Sp. nov

Valid

Ni & Li in Ni et al.

Eocene (Irdinmanhan)

Gemusi Formation

 China

A member of Hystricognathi belonging to the family Yuomyidae.

Zorania[162]

Gen. et sp. nov

Valid

Van de Weerd, de Bruijn & Wessels

Oligocene

Selimye Formation

 Turkey

A member of Hystricognathi belonging to the group Baluchimyinae. The type species is Z. milosi.

Rodent research

[edit]
  • Crespo et al. (2023) describe a diverse Early Miocene dormice assemblage from the Ribesalbes-Alcora Basin (Spain), including several taxa reported for the first time from the studied basin.[163]
  • A study on the dietary habits of extinct squirrels, as indicated by tooth morphology of extant and extinct taxa, is published by Menéndez et al. (2023).[164]
  • Sinitsa, Tleuberdina & Pita (2023) describe fossil material of Sinotamias orientalis from the Miocene Pavlodar (Gusinyi Perelet) fossil site in northern Kazakhstan, documenting previously unknown skull features of Sinotamias, and interpret the anatomy of the studied fossils as suggestive of a close phylogenetic relationship between Sinotamias and extant antelope squirrels and members of the genus Callospermophilus.[165]
  • Sinitsa & Tesakov (2023) describe fossil material of squirrels from the Miocene strata from the Tagay site (Olkhon Island, Russia), interpreted as indicative of the presence of wooded biotopes, and including fossil material of Blackia cf. miocaenica, found more than 4000 km from the previously known easternmost occurrences of Blackia.[166]
  • A study aiming to determine the locomotor behaviour of Diamantomys luederitzi on the basis of its skull and distal humerus morphologies is published by Bento Da Costa, Bardin & Senut (2023), who find evidence for fossorial, terrestrial and arboreal behaviour in different analyses, possibly indicative of a generalist lifestyle and/or intraspecific variation.[167]
  • The first description of the endocast of Prospaniomys priscus is presented by Arnaudo & Arnal (2023).[168]
  • Fossil tetrapod burrows, interpreted as produced by a communal species (most likely a member of the genus Lagostomus), are described from the Cerro Azul Formation (Argentina) by Cardonatto, Feola & Melchor (2023), who name a new ichnotaxon Maneraichnus pampeanum.[169]
  • Lechner & Böhme (2023) describe the extensive set of dental remains of Euroxenomys minutus from the Hammerschmiede clay pit (Germany), representing the largest set of the fossil material of this beaver from the Miocene, and interpret the studied material as indicative of mortality patterns of E. minutus from rivulets, rivers and swamps, which differs from the fossil record of Steneofiber depereti which shows evidence of different mortality patterns in different environments, and might indicate differences in the ecology of the two beaver species and greater vulnerability of E. minutus to predation.[170]
  • Evidence indicating that skull and postcranial morphology of Castor californicus falls largely within the range of variation seen within the North American beaver is presented by Lubbers & Samuels (2023), who interpret their findings as consistent with C. californicus and the North American beaver representing chronospecies, and confirming that the studied beavers can be considered ecological analogs.[171]
  • A study on tooth wear stages in blind mole-rats from the Pliocene sites in Greece and Turkey, and on their implications for blind mole-rat taxonomy, is published by Skandalos & van den Hoek Ostende (2023), who consider Pliospalax sotirisi to be a junior synonym of P. macoveii.[172]
  • Patnaik et al. (2023) describe new fossil material of the rhizomyine species Rhizomyides lydekkeri from the late Pliocene Siwalik localities Khetpurali and Kanthro (India), consider R. saketiensis to be a junior synonym of R. lydekkeri, interpret R. lydekkeri as moderately fossorial, and study the phylogenetic affinities of this rodent, recovering it as a member of a grade of late Miocene and Pliocene members of the genus Rhizomyides from the Indian subcontinent and Afghanistan.[173]
  • Xie, Zhang & Li (2023) describe large-sized hamster material from the Middle Pleistocene Locality 2 of Shanyangzhai (Hebei, China), interpreted as remains of the greater long-tailed hamster, and reinterpret Cricetinus varians as a subspecies of the greater long-tailed hamster, resulting in a new combination Tscherskia triton varians.[174]
  • The first Pliocene sigmodontines found in South America outside Argentina, representing the oldest known records of the genera Zygodontomys and Oligoryzomys, are reported from the San Gregorio Formation (Venezuela) by Ronez et al. (2023), who interpret this finding as supporting the possibility of a dispersal of the ancestors of sigmodontines into South America through the Antilles corridor, as well as potentially supporting the existence of open landscapes allowing the interchange between north and south portions of South America during the Neogene.[175]
  • Sehgal et al. (2023) describe a new assemblage of Miocene rodents from the Siwalik site of Dunera (India), including fossil material which might extend known age ranges of Progonomys cf. hussaini and cf. Tamias urialis.[176]
  • Winkler (2023) describes new fossil material of late Miocene and early Pliocene rodents from the Tugen Hills (Kenya), including some of the earliest records of members of the genera Paraxerus, Arvicanthis, either Grammomys or Thallomys and possibly also Heliosciurus.[177]

Other euarchontoglires

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Afrolagus[178]

Gen. et sp. nov

Valid

Sen & Geraads

Plio-Pleistocene

 Morocco

A member of the family Leporidae. Genus includes new species A. pomeli.

Edworthia greggi[179]

Sp. nov

Valid

Scott et al.

Paleocene

Paskapoo Formation

 Canada
( Alberta)

A plesiadapiform belonging to the family Paromomyidae.

Ignacius dawsonae[180]

Sp. nov

Valid

Miller, Tietjen & Beard

Wasatchian

Margaret Formation

 Canada
( Nunavut)

A plesiadapiform belonging to the family Paromomyidae.

Ignacius glenbowensis[179]

Sp. nov

Valid

Scott et al.

Paleocene

Paskapoo Formation

 Canada
( Alberta)

A plesiadapiform belonging to the family Paromomyidae.

Ignacius mckennai[180]

Sp. nov

Valid

Miller, Tietjen & Beard

Wasatchian

Margaret Formation

 Canada
( Nunavut)

A plesiadapiform belonging to the family Paromomyidae.

Pliopentalagus okuyamai[181]

Sp. nov

Valid

Tomida & Takahashi

Pliocene

Ueno Formation

 Japan

A member of the family Leporidae belonging to the subfamily Leporinae.

Prolagus migrans[178]

Sp. nov

Valid

Sen & Geraads

Plio-Pleistocene

 Morocco

Trischizolagus meridionalis[178]

Sp. nov

Valid

Sen & Geraads

Plio-Pleistocene

 Morocco

A member of the family Leporidae.

Miscellaneous euarchontoglires research

[edit]
  • López-Torres et al. (2023) present the first virtual endocast of an anagalid (the holotype of Anagale gobiensis), reporting evidence of the presence of traits observed in fossorial mammals, and of relatively large olfactory bulbs suggesting that A. gobiensis was olfaction-driven.[182]
  • A study on the morphology of the mandibles of members of the stem group of Glires from the Paleocene of China, providing evidence of diversification and specialization of chewing modes interpreted as indicative of different dietary specializations, is published by Fostowicz-Frelik, Cox & Li (2023).[183]
  • Evidence from ancient DNA interpreted as supporting the placement of the Sardinian pika in an independent sister group to the family Ochotonidae is presented by Utzeri et al. (2023).[184]
  • A study on the bone histology of the Sardinian pika specimens from the Late Pleistocene Grotta della Medusa, providing evidence of weaning of pups at large size, delayed maturation and minimum lifespan of 8 years, is published by Fernández-Bejarano et al. (2023).[185]
  • A study on the structure of the bony labyrinth of Megalagus turgidus, interpreted as indicative of rabbit-like hearing sensitivity and locomotor behavior, is published by López-Torres et al. (2023).[186]
  • A study on the bone histology of Nuralagus rex, providing evidence of slow growth and delayed maturity, is published by Köhler et al. (2023).[187]
  • The first frozen mummy of an adult Pleistocene hare Lepus tanaiticus is described from Sakha (Russia) by Boeskorov, Chernova & Shchelchkova (2023).[188]
  • Evidence from mitochondrial DNA interpreted as indicating that "Lepus tanaiticus" represents an ancient morphotype of the mountain hare rather than a distinct species is presented by Rabiniak et al. (2023).[189]
  • White et al. (2023) present the virtual endocast of a specimen of Niptomomys cf. N. doreenae from the Paleocene of Wyoming (United States), and interpret the anatomy of the brain of this plesiadapiform as consistent with the interpretations of plesiadapiforms as being more olfaction-focused than euprimates.[190]
  • A study on the distal phalanx morphology in plesiadapiforms is published by Maiolino et al. (2023), who report the presence of morphological similarities to extant mammals adapted to vertical climbing, as well as evidence of adaptations to different ways of grasping tree branches when climbing in different plesiadapiform taxa.[191]

Laurasiatherians

[edit]

Artiodactyls

[edit]

Cetaceans

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Brevirostrodelphis[192]

Gen. et comb. nov

Valid

Godfrey & Lambert

Miocene (Burdigalian)

Calvert Formation

 United States
( Maryland)

A member of Delphinida. The type species is "Delphinodon" dividum True (1912).

Cammackacetus[192]

Gen. et sp. nov

Valid

Godfrey & Lambert

Miocene (Tortonian)

St. Marys Formation

 United States
( Maryland)

A member of Delphinida. The type species is C. hazenorum.

Caolodelphis[192]

Gen. et sp. nov

Valid

Godfrey & Lambert

Miocene (Burdigalian)

Calvert Formation

 United States
( Maryland)

A toothed whale of uncertain affinities. The type species is C. milleri.

Charadrobalaena[193]

Gen. et sp. nov

Valid

Bisconti et al.

Pliocene

 Italy

A member of the family Balaenidae. The type species is C. valentinae.

Coronodon newtonorum[194]

Sp. nov

Valid

Boessenecker, Beatty & Geisler

Oligocene

Chandler Bridge Formation

 United States
( South Carolina)

Coronodon planifrons[194]

Sp. nov

Valid

Boessenecker, Beatty & Geisler

Oligocene

Chandler Bridge Formation

 United States
( South Carolina)

Crisocetus[195]

Gen. et sp. nov

Gaetán, Paolucci & Buono

Miocene

Gaiman Formation

 Argentina

A toothed whale with anatomical similarities to members of the family Squaloziphiidae. The type species is C. lydekkeri.

Diaphorocetus ortegai[196]

Sp. nov

Valid

Lambert et al.

Miocene

Chilcatay Formation

 Peru

A member of the stem group of Physeteroidea.

Enigmatocetus[192]

Gen. et sp. nov

Valid

Godfrey & Lambert

Miocene

Calvert Formation

 United States
( Virginia)

A toothed whale of uncertain affinities. The type species is E. posidoni.

Grimadelphis[192]

Gen. et sp. nov

Valid

Godfrey & Lambert

Miocene

Calvert Formation

 United States
( Maryland)

A member of the family Platanistidae. The type species is G. spectorum.

Herbeinodelphis[192]

Gen. et sp. nov

Valid

Godfrey & Lambert

Miocene (Serravallian)

Calvert Formation

 United States
( Maryland)

A member of Delphinida. The type species is H. nancei.

Ihlengesi changoensis[197]

Sp. nov

Valid

Bianucci et al.

Plio-Pleistocene

Iquique Basin

Pacific Ocean off the Chilean coast

A beaked whale.

Jobancetus[198]

Gen. et sp. nov

Valid

Kimura, Hasegawa & Suzuki

Miocene (Burdigalian)

Minamishirado Formation

 Japan

A baleen whale of uncertain affinities. Genus includes new species J. pacificus. Published online in 2022, but the issue date is listed as January 2023.[198]

Miminiacetus[192]

Gen. et comb. nov

Valid

Godfrey & Lambert

Miocene (Langhian and Serravallian)

Calvert Formation

 United States
( Maryland)

A member of Delphinida. The type species is "Lophocetus" pappus Kellogg (1955).

Nihohae[199]

Gen. et sp. nov

Valid

Coste, Fordyce & Loch

Oligocene

 New Zealand

A dolphin related to "waipatiids". The type species is N. matakoi.

Nihoroa[200]

Gen. et sp. nov

Valid

Coste, Fordyce & Loch

Oligocene

Otekaike Limestone

 New Zealand

A member of Waipatiidae. The type species is N. reimaea.

Olympicetus thalassodon[201]

Sp. nov

Valid

Velez-Juarbe

Oligocene

Pysht Formation

 United States
( Washington)

A member of the family Simocetidae.

Perucetus[202] Gen. et sp. nov Valid Bianucci et al. Eocene (Bartonian) Paracas Formation  Peru A basilosaurid. The type species is P. colossus.

Pictodelphis[192]

Gen. et sp. nov

Valid

Godfrey & Lambert

Miocene (Langhian)

Calvert Formation

 United States
( Maryland)

A member of Delphinida. The type species is P. kidwellae.

Platysvercus[203] Gen. et sp. nov Guo & Kohno Miocene (Burdigalian) Sugota Formation  Japan A member of the family Kentriodontidae. The type species is P. ugonis.

Pomatodelphis santamaria[192]

Sp. nov

Valid

Godfrey & Lambert

Miocene (Tortonian)

St. Marys Formation

 United States
( Maryland)

Squalodon murdochi[192]

Sp. nov

Valid

Godfrey & Lambert

Miocene (Langhian)

Calvert Formation

 United States
( Maryland)

Tutcetus[204] Gen. et sp. nov Antar et al. Eocene Fayum Depression  Egypt A basilosaurid. The type species is T. rayanensis

Westmorelandelphis[192]

Gen. et sp. nov

Valid

Godfrey & Lambert

Miocene (Serravallian)

Choptank Formation

 United States
( Virginia)

A member of Delphinida. The type species is W. tacheroni.

Xenorophus simplicidens[205] Sp. nov Boessenecker & Geisler Oligocene Chandler Bridge Formation  United States
( South Carolina)
A member of Xenorophidae.
Cetacean research
[edit]
  • A study on the evolution of the body length of cetaceans, providing evidence of very few global shifts in body length after cetaceans entered the oceans, but also of multiple local, more taxonomically restricted shifts, is published by Burin et al. (2023).[206]
  • A study on the morphological diversity of lower jaws of cetaceans throughout their evolutionary history is published by Coombs et al. (2023), who find evidence of two periods of rapid evolution resulting in the greatest morphological diversity (in the early to mid-Eocene archaeocetes and in the mid-Oligocene toothed whales), and identify dietary specializations and echolocation as evolutionary drivers with the strongest influence on the lower jaw morphology.[207]
  • A hindlimb of a fully aquatic cetacean living 43–42 million years ago is described from Ukraine by Davydenko et al. (2023), who interpret this finding as indicating that some early fully aquatic cetaceans had functional hindlimbs that could be involved in advanced styles of swimming.[208]
  • Davydenko et al. (2023) describe an isolated tibia fragment from the Eocene of Helmstedt (Germany), which most likely belonged to an archaeocete and might represent either the first record of Protocetidae from Europe or evidence that early basilosaurids had large, protocetid-like hindlimbs.[209]
  • Van Vliet et al. (2023) assign a cetacean vertebra from the Eocene (Lutetian or Bartonian) strata of the Folgarolas/Folgueroles Formation (Spain) to a small-sized species of Pachycetus, expanding the geographic distribution of this genus to southwestern Europe.[210]
  • A study on the bone microanatomy of two basilosaurid specimens from the Eocene deposits of Ukraine assigned to the genus Basilotritus, providing evidence of an advanced system of ballast distribution in the skeleton, is published by Davydenko, Tretiakov & Gol'din (2023).[211]
  • Revision of the eurhinodelphinid cranial material from the Miocene Pietra da Cantoni Formation in the Monferrato area (Piedmont, Italy) is published by Tosetto et al. (2023), who also study the phylogenetic relationships and biogeography of eurhinodelphinids, interpreting their presence in the Mediterranean, Northwest Atlantic and Paratethys as the result of different dispersal events from a Northeast Atlantic center of origin.[212]
  • Viglino et al. (2023) describe tooth enamel and dentin microstructure in Notocetus vanbenedeni and Phoberodon arctirostris, and interpret their findings as indicative of a raptorial feeding strategy in P. arctirostris and of a combination suction feeding method in N. vanbenedeni, as well as indicative of greater diversity of tooth morphology and enamel structure in extant toothed whales than in extinct ones.[213]
  • Benites-Palomino et al. (2023) report the discovery of new fossil material of Caribbean cetaceans from the Miocene Chagres Formation (Panama), including Piscolithax sp. cf. Acrophyseter sp. and indeterminate scaphokogiine, and consider the studied assemblage to have the closest affinities with the cetacean assemblage from the Pisco Formation (Peru), providing evidence that the Caribbean–Pacific water interchange continued during the shallowing of the Central American Seaway in the Miocene.[214]
  • Fossil material of a member of Chaeomysticeti, representing the largest baleen whale from the early Miocene reported to date, is described from the Mannum Formation (Australia) by Rule et al. (2023), who argue that baleen whales first evolved large body size in the Southern Hemisphere.[215]
  • Ritsche & Hampe (2023) describe periotic bones of two basal members of Balaenomorpha from the Miocene Biemenhorst Subformation of the Breda Formation (Germany), showing characters or character combinations never seen before in known baleen whales, and revise important anatomical characteristics of the periotic bones of baleen whales.[216]
  • Tanaka, Nagasawa & Oba (2023) describe a skull of a rorqual from the Pliocene-Pleistocene Shinazawa Formation (Japan), identified as aff. Balaenoptera bertae and extending known geographic range of the lineage of B. bertae (formerly known only from the Pliocene Purisima Formation, California, United States).[217]
  • Govender & Marx (2023) describe new baleen whale fossils the early Pliocene localities of Saldanha Steel, Milnerton and Langebaanweg (South Africa), including fossils of rorquals belonging to the genera Diunatans and Fragilicetus (previously known only from the North Sea), as well as potentially younger specimens trawled from the seafloor off the Cape Peninsula and south coast of South Africa, including the first pygmy right whale fossil material from Africa reported to date.[218]

Other artiodactyls

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Bos primigenius thrinacius[219]

Ssp. nov

Siarabi et al.

Pleistocene

 Greece

A subspecies of the aurochs.

Dama celiae[220] Sp. nov van der Made et al. Pleistocene  Spain A species of fallow-deer.

Entelodontellus[221]

Gen. et sp. nov

Valid

Yu et al.

Eocene

Caijiachong Formation

 China

An entelodont. The type species is E. zhouliangi.

Gazellospira tsaparangensis[222]

Sp. nov

Valid

Wang, Li & Tseng

Pliocene

Zanda Basin

 China

A twisted-horned antelope.

Hispanomeryx linxiaensis[223]

Sp. nov

Aiglstorfer et al.

Miocene

Linxia Basin

 China

A member of the family Moschidae.

Lophiomeryx triangularis[224]

Sp. nov

Valid

Wang, Wang & Zhang

Oligocene

 China

A member of Tragulina belonging to the family Lophiomerycidae.

"Micromeryx" caoi[223]

Sp. nov

Aiglstorfer et al.

Miocene

Linxia Basin

 China

A member of the family Moschidae.

Obotherium[225] Gen. et sp. nov Bai et al. Eocene Irdin Manha Formation  China A member of the family Tapirulidae. The type species is O. parvum, also includes new species O. tongi.

Ovis gracilis[226]

Sp. nov

Valid

Vislobokova

Pleistocene

Crimea

A species of Ovis.

Paracamelus qiui[227]

Sp. nov

Valid

Liu, Hou & Zhang

Miocene

Yushe Basin

 China
 Russia
 Ukraine

Stevenscamelus[228]

Gen. et comb. nov

Valid

Prothero, Beatty & Marriott

Eocene (Chadronian)

 United States
( Texas)

A member of the family Camelidae belonging to the subfamily Floridatragulinae. The type species is "Poebrotherium" franki Wilson (1974).

Tapiruloides[225] Gen. et sp. nov Bai et al. Eocene Shara Murun Formation  China A member of the family Tapirulidae. The type species is T. usuensis.

Tavridia[229]

Gen. et sp. nov

Valid

Vislobokova

Pleistocene

Crimea

A member of the tribe Antilopini. The type species is T. gromovi.

Tragoportax perses[230]

Sp. nov

Valid

Orak, Kostopoulos & Ataabadi

Miocene

 Iran

A member of the family Bovidae belonging to the subfamily Bovinae and the tribe Tragoportacini.

Turcocerus africanus[231]

Sp. nov

Geraads, McCrossin & Benefit

Miocene

 Kenya

A bovid.

Umbrotherium engesserii[232]

Sp. nov

Valid

Pandolfi & Rook

Miocene (Turolian)

 Italy

A member of the family Giraffidae.

Ustatochoerus tedfordi[233]

Sp. nov

Valid

Skeels Stevens et al.

Hemingfordian

Runningwater Formation

 United States
( Nebraska)

An oreodont.

Other artiodactyl research
[edit]
  • Evidence indicating that the turnover of European even-toed ungulates during the Eocene-Oligocene transition was more likely caused by environmental changes than by competition between endemic and immigrant ungulates is presented by Weppe et al. (2023).[234]
  • Watmore et al. (2023) revise the systematics of the late Eocene "oreonetine" oreodonts, interpreting Oreonetinae as a paraphyletic group and reinterpreting Limnenetes as a leptauchenine.[235]
  • A new specimen of Camelops hesternus is described from the Late Pleistocene sediments of the Cerro Grande de la Mesa Calderón monogenetic volcano (Valsequillo Basin, Mexico) by Carbot-Chanona et al. (2023), who determine the studied specimen to have a browsing diet, and estimate low population density of C. hesternus in the Valsequillo Basin.[236]
  • Tsubamoto, Kunimatsu & Nakatsukasa (2023) describe fossil material of Cainochoerus from the Miocene Nakali Formation (Kenya), representing the oldest record of the genus reported to date.[237]
  • Wimberly (2023) determines which skeletal proxies are the best predictors of body mass in extant ruminants, and estimates the body mass of Cosoryx furcatus, Aletomeryx sp. and Bison antiquus.[238]
  • New information on the anatomy of the skull of Hypisodus minimus is provided by Keppeler et al. (2023).[239]
  • Solounias & Jukar (2023) report new occurrences of Vishnutherium iravadicum, Honanotherium, Birgerbolhinia schaubi and Bramatherium sp. from the Vallesian and Turolian faunas of the Siwaliks, Pikermi, Samos and Maragheh, and re-classify "Giraffa" priscilla as Vishnutherium priscillium.[240]
  • Avilla, Román-Carrión & Rotti (2023) reinterpret the fossil material of Agalmaceros and Charitoceros as remains of the white-tailed deer, and consider the thorns of the antlers characterizing Agalmaceros and Charitoceros to be the symptom of a pathology that also affects extant deers.[241]
  • Uzunidis et al. (2023) describe fossil material of the Irish elk from the Teixoneres Cave, representing the first record of this species from the late Pleistocene of the eastern Iberian Peninsula, and interpret the fossil record of the Irish elk from the Iberian Peninsula in general to be indicative of rare incursions during the colder periods associated with a drop in sea level making it possible to bypass the Pyrenees, and indicative of differences in diets of Iberian individuals and Northern European individuals.[242]
  • Evidence from the study of pollen preserved with of an Irish elk specimen from the Marker Wadden (the Netherlands) living during the early Eemian or during an early Weichselian interstadial, interpret as indicating that the studied specimen foraged in a savannah-like landscape with a semi-arid climate, dominated by closed, mainly tall-herb vegetation, is presented by van der Knaap et al. (2023).[243]
  • Mecozzi, Sardella & Breda (2023) review fossil material of fallow deers from the late Early Pleistocene to the late Middle Pleistocene sites in Italy, and report that, in addition to the antler characters, morphological features of skull and teeth (especially of the lower teeth) might be useful for the distinction among different fallow deer taxa.[244]
  • Klein et al. (2023) describe partial bony labyrinth of a fetus of Miotragocerus pannoniae from the Miocene locality Höwenegg (Baden-Württemberg, Germany) and compare it with bony labyrinths of adult specimens from the same locality, providing the first information on the growth and ontogenetic variation of this structure in a fossil bovid.[245]
  • Description of new fossil material of Miotragocerus gregarius from the Linxia Basin and Fugu County (China) and a study on the affinities of this bovid is published by Shi & Zhang (2023).[246]
  • New fossil material of Neotragocerus is described from the Hemphillian Fort Rock Formation (Oregon, United States) by Martin & Mead (2023), who interpret the anatomy of members of this genus as indicative of boselaphine affinities, retain N. improvisus as a valid species, and consider N. lindgreni to be a nomen dubium.[247]
  • A study on the population dynamics of bisons from the Northern Great Plains, based on data from mitochondrial genomes from remains with the age ranging from 12,226 to 167 calibrated years before present, is published by Ovchinnikov & McCann (2023), who report evidence of two-fold population increase immediately following the Last Glacial Maximum, evidence indicating that the population of bisons was stable for at least 4000 years in the mid and late Holocene, and evidence of continuous population decline starting 2700 years ago.[248]
  • Kostopoulos, Sevim Erol & Mayda (2023) describe fossil material of "ovibovin" bovids from the Miocene of Çorakyerler (Turkey), providing evidence of the co-occurrence of two "ovibovins" (Criotherium argalioides and Hezhengia? cf. inundata) of similar size in the same assemblage; the authors also tentatively refer "Plesiaddax" simplex from Kayadibi (Turkey) to the genus Hezhengia.[249]
  • Kostopoulos & Merceron (2023) describe new fossil material of Procobus from the Dytiko-1 fossil site in Axios Valley (Greece), and interpret Procobus as a member of pan-Caprini.[250]
  • A study on the paleoecology of Rusingoryx atopocranion, as inferred from stable strontium and carbon isotope data from molars, is published by O'Brien et al. (2023), who interpret their findings as indicative of migratory behavior of R. atopocranion, comparable to that of extant wildebeest.[251]
  • Description of the fossil material of bovids from the Palan-Tyukan site (Azerbaijan) is published by Titov, Iltsevich & Sablin (2023), who interpret the composition of the studied assemblage as indicative of the presence of savanna-like forest-steppe landscapes in the studied area during the Early Pleistocene.[252]
  • A study on the auditory region morphology of extant and extinct members of Hippopotamoidea, and on its implications for putative aquatic affinities of fossil hippopotamoids, is published by Orliac et al. (2023), who interpret their findings as indicative of independent acquisitions of semiaquatic behaviour in hippopotamids and cetaceans.[253]
  • Jiménez-Hidalgo & Carbot-Chanona (2023) describe fossil material of an anthracothere belonging to the genus Arretotherium from the Oligocene Iniyoo Local Fauna (Oaxaca) and from the Miocene of Simojovel de Allende (Chiapas), representing the first records of anthracotheres in Mexico reported to date and the southernmost records of Arretotherium in North America during the Oligocene and the early Miocene.[254]
  • Description of new fossil material of Parabrachyodus hyopotamoides from the Miocene deposits from Samane Nala (Bugti Hills, Pakistan) and a study on the affinities of this anthracothere is published by Gernelle et al. (2023).[255]
  • A study on the affinities of "Hippopotamus" pantanellii is published by Martino et al. (2023), who transfer this species to the genus Archaeopotamus.[256]
  • Revision of the Early Pleistocene hippopotamid material from Buia (Eritrea) is published by Pandolfi et al. (2023), who report the presence of two hippopotamid species at Buia (Hippopotamus gorgops and aff. Hippopotamus karumensis, the latter representing the northernmost and one of the youngest occurrences of the species in Africa), and provide new characters for taxonomic discrimination between the two taxa.[257]
  • A study on the histology of ribs of extinct Pleistocene Hippopotamus species from Cyprus and Greece, providing evidence of increased density of osteocyte lacunae in the Cyprus dwarf hippopotamus compared to Hippopotamus creutzburgi and Hippopotamus antiquus, is published by Miszkiewicz et al. (2023), who interpret their findings as likely signifying bone remodelling in insular hippopotamids related to reduction of their body size.[258]
  • Mecozzi et al. (2023) revise the skull of a hippopotamid from the Tor di Quinto area (Italy), interpreting it as fossil material of the extant hippopotamus found in the strata of the Cava Montanari with an age spanning between 560,000 and 460,000 years, representing the earliest confirmed record of the hippopotamus in Europe.[259]
  • Description of new fossil material and a study on the affinities of Gujaratia indica is published by Rautela & Bajpai (2023), who find Gujaratia to be related to the North American diacodexeids and Diacodexis gigasei and D. morrisi from Europe, while finding raoellids and pakicetids to be closer to European dichobunoids such as D. morrisi than to Gujaratia.[260]

Carnivorans

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Amphimachairodus hezhengensis[261]

Sp. nov

Jiangzuo et al.

Miocene

Linxia Basin

 China

Cyonasua zettii[262]

Sp. nov

Hontecillas et al.

Miocene

Cerro Azul Formation

 Argentina

A member of the family Procyonidae.

Dinofelis werdelini[263]

Sp. nov

Jiangzuo et al.

Pliocene (Zanclean)

Varswater Formation

 South Africa

Eirictis zhangi[264]

Sp. nov

Farjand et al.

Pleistocene

Yuanmou Formation

 China

A member of the family Mustelidae belonging to the tribe Lyncodontini.

Eoarctos[265]

Gen. et sp. nov

Valid

Wang et al.

Oligocene

Brule Formation

 United States
( North Dakota)

A member of Ursoidea belonging to the family Subparictidae. The type species is E. vorax.

Huracan[266]

Gen. et comb. et sp. nov

Valid

Jiangzuo et al.

Miocene, Pliocene, possibly earliest Pleistocene

 China
 Spain
 United States
 Pakistan?

A bear belonging to the tribe Agriotheriini. The type species is "Agriotherium" schneideri Sellards (1916); genus also includes new species H. qiui from East Asia, as well as "Agriotherium" coffeyi Dalquest (1986) from North America, "Agriotherium" roblesi Morales & Aguirre (1976) from Europe and possibly "Hyaenarctos" punjabiensis Lydekker (1884) from South Asia.

Lokotunjailurus chinsamyae[263]

Sp. nov

Jiangzuo et al.

Pliocene (Zanclean)

Varswater Formation

 South Africa

Lonchocyon[267]

Gen. et sp. nov

Valid

Zhang, Bai & Wang

Eocene

Baron Sog Formation

 China

A member of Arctoidea of uncertain affinities, possibly an early offshoot of amphicyonids or hemicyonines. The type species is L. qiui.

Nyctereutes peii[268]

Sp. nov

Valid

Jiang et al.

Pleistocene

 China

A species of Nyctereutes.

Pachypanthera[269]

Gen. et sp. nov

De Bonis et al.

Miocene

 Thailand

A pantherine felid. The type species is P. piriyai.

Palaeopanthera[270]

Gen. et comb. nov

Valid

Hemmer

Miocene and Pliocene

 China
 Turkey

A felid with affinities to members of the genus Neofelis. Genus includes "Panthera" blytheae Tseng et al. (2014) and "Felis" pamiri Ozansoy.

Panthera gombaszoegensis jinpuensis[271]

Ssp. nov

Valid

Jiangzuo et al.

Middle Pleistocene

 China

Announced in 2022; the final article version was published in 2023.

Pinnarctidion iverseni[272] Sp. nov Everett, Deméré & Wyss Oligocene Pysht Formation  United States ( Washington) A basal pinnipediform.

Carnivoran research

[edit]
  • Morlo et al. (2023) describe amphicyonid fossil material from the Miocene site Napudet (Emunyan Beds; Kenya), including a molar of a large-bodied amphicyonid, interpreted as likely distinct from Cynelos jitu and probably belonging to the genus Myacyon.[273]
  • Varajão de Latorre (2023) compares the bacula of five species of borophagine canids with those of extant canids, and interprets their anatomy as indicating that borophagines had long copulatory durations and spontaneous ovulation, similar to those occurring in extant canines.[274]
  • A study on the morphology of the frontal sinuses of Eucyon adoxus, E. davisi and E. monticinensis is published by Frosali et al. (2023), who report that E. adoxus had frontal sinuses with adaptations to high stresses during feeding similar to adaptations present in hypercarnivorous canids that cooperatively hunt large prey, in spite of its overall craniodental morphology being suggestive of feeding on small prey.[275]
  • Partial left hindlimb assigned to cf. Aenocyon dirus is reported from the Upper Pleistocene deposits from the QM38 site in Quebrada Maní (Pampa del Tamarugal basin, Atacama Desert, northern Chile) by Caro et al. (2023), representing the only large predator in its ecosystem reported to date.[276]
  • Reynolds et al. (2023) confirm the identification of the dentary of a dire wolf reported from the Surprise Bluff locality in the Medicine Hat Buried Valley system (Alberta, Canada), representing the northernmost known occurrence of the species in North America.[277]
  • Martínez-Navarro et al. (2023) report the discovery of Early Pleistocene fossil material of the Ethiopian wolf from the Melka Wakena site-complex (Ethiopia), representing the first appearance of this species in the fossil record reported to date.[278]
  • Revision of the systematics of large canids from the Pleistocene of South America is published by Prevosti (2023), who synonymizes Protocyon orcesi with Protocyon troglodytes and Canis nehringi with Aenocyon dirus, transfers "Theriodictis" tarijensis to the genus Protocyon, and excludes "Canis" gezi from the genus Canis.[279]
  • A study on the brain anatomy and likely foraging ecology of Potamotherium is published by Lyras et al. (2023), who interpret their findings as indicating that Potamotherium likely relied on its whiskers to sense its environment when foraging.[280]
  • A study on the ecomorphology of percrocutoids, as inferred from postcanine teeth, is published by Pérez-Claros (2023).[281]
  • A study on the ecomorphology of Ictitherium viverrinum and Hyaenictitherium wongii is published by Kargopoulos et al. (2023), who consider both species to occupy a niche similar to that of extant coyote and to be likely engaged in interspecific competition.[282]
  • Evidence indicating that machairodontines were an exception to the general tendency of the smaller-sized members of groups of closely related species to have proportionally shorter rostra and larger braincases is presented by Tamagnini et al. (2023).[283]
  • A study on the elbow joint of Miracinonyx trumani is published by Figueirido et al. (2023), who find that M. trumani had an elbow morphology intermediate to that of extant cougar and extant cheetah, and argue that M. trumani was not as specialized as the cheetah for deploying a predatory behaviour based on fast running.[284]
  • A study on the mandible size variability in Panthera spelaea from the Pleistocene of Northern Eurasia is published by Puzachenko & Baryshnikov (2023), who interpret their findings as confirming the presence of sexual size dimorphism in cave lions, and supporting the subspecies status of the Beringian lion (Panthera spelaea vereshchagini).[285]
  • Purported large-bodied lion skull reported from the Pleistocene Natodomeri site (Kenya)[286] is argued by Sherani & Sherani (2023) to have affinities with Panthera spelaea fossilis.[287]
  • A study on the evolutionary history of the tiger, as indicated by genomic data from ancient or historical (100–10,000 years old) specimens collected across mainland Asia, is published by Sun et al. (2023), who interpret their findings as indicating that Southwest China was a Late Pleistocene refugium for a relic basal tiger lineage, as well as indicative of a post-glaciation admixture of divergent lineages of South China tigers which took place in Eastern China.[288]
  • Deutsch et al. (2023) compare the hyoid elements of specimens of Smilodon fatalis and Panthera atrox from the La Brea Tar Pits with those of extant felids, and argue that the vocalizations P. atrox likely resembled those of extant pantherines, including having the ability to roar, while the vocalizations of S. fatalis are harder to determine, possibly more similar to that of purring cats than roaring cats, but produced at a lower frequency.[289]
  • Gross et al. (2023) describe coprolites from the Miocene Gratkorn site (Austria), interpreted as likely produced by members of the genera Protictitherium and Albanosmilus, and suggesting that Protictitherium mostly fed on small vertebrates, while Albanosmilus was a hypercarnivore.[290]
  • A study on the diversity of the Vallesian carnivorans from the Catalan locality of Can Llobateres 1, providing evidence of a major influx of carnivorans during the early Vallesian and evidence of the collapse of the studied fauna during the mid-Vallesian turnover, is published by Madern et al. (2023).[291]
  • Sianis et al. (2023) describe an assemblage of Early Pleistocene carnivorans from the Karnezeika locality (Greece), including new fossil material of the mustelid Baranogale helbingi, and providing evidence of the presence of Pachycrocuta brevirostris in southeastern Europe before the Olduvai subchron, similarly to western Europe.[292]
  • One of the richest (in terms of both specimens and number of species) carnivoran assemblages from the Early Pleistocene of Europe reported to date is described from the Grăunceanu site (Romania) by Werdelin et al. (2023).[293]
  • Schmökel, Farrell & Balisi (2023) report evidence of high prevalence of subchondral defects resembling osteochondritis dissecans in the femoral and humeral joint surfaces of specimens of Aenocyon dirus and Smilodon fatalis from the La Brea Tar Pits.[294]

Chiropterans

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Americanycteris[295]

Gen. et sp. nov

Valid

Morgan et al.

Miocene (Arikareean and Hemingfordian)

Cucaracha Formation

 Panama

A leaf-nosed bat. The type species is A. cyrtodon.

Eptesicus nilssonii varangus[296]

Ssp. nov

Valid

Lopatin

Early Pleistocene

Crimea

A subspecies of the northern bat.

Floridopteryx[297]

Gen. et sp. nov

Valid

Morgan & Czaplewski

Miocene (Hemingfordian)

 United States
( Florida)

A member of the family Emballonuridae. The type species is F. poyeri.

Icaronycteris gunnelli[298]

Sp. nov

Rietbergen et al.

Wasatchian

Green River Formation

 United States
( Wyoming)

Karstopteryx[297]

Gen. et sp. nov

Valid

Morgan & Czaplewski

Oligocene (Arikareean)

 United States
( Florida)

A member of the family Emballonuridae. The type species is K. gunnelli.

Oligopteryx[297]

Gen. et 2 sp. nov

Valid

Morgan & Czaplewski

Oligocene (Whitneyan to Arikareean)

 United States
( Florida)

A member of the family Emballonuridae. The type species is O. floridanus; genus also includes O. hamaxitos.

Rhinolophus mehelyi scythotauricus[299]

Ssp. nov

Valid

Lopatin

Early Pleistocene

Crimea

A subspecies of Mehely's horseshoe bat.

Vielasia[300]

Gen. et sp. nov

Valid

Hand et al.

Eocene (Ypresian)

Quercy Phosphorites Formation

 France

An early bat. The type species is V. sigei.

Xenorhinos bhatnagari[301]

Sp. nov

Valid

Hand et al.

Miocene

Riversleigh World Heritage Area

 Australia

A member of the family Rhinonycteridae.

Chiropteran research

[edit]

Eulipotyphlans

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Ceutholestes acerbus[304]

Sp. nov

Valid

Jones & Beard

Paleocene (Clarkforkian)

 United States
( Wyoming)

A member of the family Nyctitheriidae.

Mystipterus austinae[305]

Sp. nov

Valid

Korth, Boyd & Emry

Oligocene (Whitneyan)

Brule Formation

 United States
( North Dakota)

A member of the family Talpidae.

Plagioctenodon dawsonae[304]

Sp. nov

Valid

Jones & Beard

Paleocene (Clarkforkian)

 United States
( Wyoming)

A member of the family Nyctitheriidae.

Plagioctenodon goliath[304]

Sp. nov

Valid

Jones & Beard

Paleocene (Clarkforkian)

 United States
( Wyoming)

A member of the family Nyctitheriidae.

Plagioctenoides cryptos[304]

Sp. nov

Valid

Jones & Beard

Paleocene (Clarkforkian)

 United States
( Wyoming)

A member of the family Nyctitheriidae.

Eulipotyphlan research

[edit]
  • Revision of the erinaceid and dimylid material from the late Miocene localities in Slovakia, including the first description of the deciduous premolars of Lantanotherium, is published by Cailleux, van den Hoek Ostende & Joniak (2023).[306]
  • Systematic revision of the Cuban species belonging to the genus Nesophontes is published by Orihuela León (2023).[307]

Perissodactyls

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Aprotodon qiui[308]

Sp. nov

Sun et al.

Miocene

Zhang'enbao Formation

 China

A rhinoceros.

Diceratherium marriottae[309]

Sp. nov

Valid

Santos, Prothero & Welsh

Oligocene (Arikareean)

Sharps Formation

 United States
( South Dakota)

A rhinoceros.

Eggysodon lingwuensis[310]

Sp. nov

Lu et al.

Oligocene

 China

Idiodontherium[311]

Gen. et 2 sp. nov

Perales-Gogenola et al.

Eocene

 Spain

A member of the family Palaeotheriidae. Genus includes I. martindejesusi and I. astibiai.

Parvorhinus[312] Gen et. comb. nov In press Pandolfi & Martino Miocene  Germany A rhinoceros. The type species is "Dicerorhinus" steinheimensis.

Prosantorhinus yei[313]

Sp. nov

Valid

Sun, Deng & Wang

Miocene

Zhang'enbao Formation

 China

A rhinoceros belonging to the tribe Teleoceratini.

Shansirhinus dengi[314]

Sp. nov

Valid

Lu et al.

Miocene

 China

A rhinoceros.

Tongxinotherium[315]

Gen. et sp. nov

Valid

Sun et al.

Miocene

Zhang'enbao Formation

 China

An elasmothere rhinoceros. The type species is T. latirhinum.

Perissodactyl research

[edit]
  • Kampouridis, Rățoi & Ursachi (2023) describe new chalicothere material from the Miocene Pogana 1 locality (Romania), and identify the locality as one of the few confirmed cases of the cooccurrence of schizotheriine and chalicotheriine chalicotheres.[316]
  • Pandolfi et al. (2023) describe new fossil material of Tapirus arvernensis from the Pliocene locality of Camp dels Ninots (Spain) and interpret T. arvernensis as a close relative of the Malayan tapir.[317]
  • Description of a new skull of Zaisanamynodon borisovi from the Eocene Aksyir Svita (Kazakhstan) and a new skull of Metamynodon planifrons from the Oligocene Brule Formation (South Dakota, United States), as well as a study on the phylogenetic relationships of amynodontids, is published by Veine-Tonizzo et al. (2023).[318]
  • A study on the phylogenetic relationships of rhinoceroses belonging to the group Aceratheriinae is published by Lu, Deng & Pandolfi (2023).[319]
  • A study on the reproductive strategy of Plesiaceratherium gracile is published by Lu et al. (2023), who report evidence of singleton pregnancy, suckling for 2–3 years and sexual maturity by approximately 5 years of age, and postulate that the evolution of litter size in odd-toed ungulates is determined by singleton pregnancy since the Eocene.[320]
  • Revision of the chilothere aceratheriine taxa from the Upper Miocene of Samos (Greece), supporting the validity of Chilotherium schlosseri and Eochilotherium samium as well as their separation on a generic level, is published by Kampouridis et al. (2023).[321]
  • Redescription of "Dicerorhinus" cixianensis is published by Li & Deng (2023), who transfer this species to the genus Lartetotherium.[322]
  • A skull of a rhinoceros is described from the late Neogene Qin Basin (Shanxi, China) by Shi et al. (2023), who assign this skull to the species Dihoplus ringstroemi, and confirm that D. ringstroemi was a distinct species.[323]
  • Belyaev et al. (2023) report the discovery of the nasal horn of a woolly rhinoceros from the permafrost of Sakha (Russia), with the shape of the base corresponding well to the shape of the nasal rugosity area, and argue that the narrower shape of the horn base in the previously found specimens was associated with damage after burial.[324]
  • Yuan et al. (2023) generate four mitogenomes from Late Pleistocene woolly rhinoceros from Northern China, report evidence of higher genetic diversity of Chinese woolly rhinoceros compared to Siberian ones, and report that one of the studied samples represent a lineage that diverged close to the timing of the first appearance of the species, where the other three samples represent a lineage also known from the Wrangel Island (Russia).[325]
  • Seeber et al. (2023) use genomic data from cave hyena coprolites from Middle Palaeolithic layers in Bockstein-Loch and Hohlenstein-Stadel caves (Germany) to assemble the first European woolly rhinoceros mitogenomes, and interpret the studied mitogenomes as genetically distinct from those of the Siberian woolly rhinoceros, and possibly indicative of a split of the populations coinciding with the earliest records of woolly rhinoceros in Europe.[326]
  • A study on the phylogenetic relationships of Eurasian Quaternary rhinoceroses is published by Pandolfi (2023).[327]
  • Revision of the fossil material of early Eocene hippomorphs from the Paris Barin (France) is published by Bronnert & Métais (2023), who provide evidence of differences between the faunas of Southern and Northern Europe at the very beginning of the Eocene, as well as evidence of homogenization of these faunas and evidence of faunal turnover between the sites close to MP7 and those close to MP8-9.[328]
  • A study on the evolution of body size in brontotheres is published by Sanisidro, Mihlbachler & Cantalapiedra (2023), who interpret their findings as indicative of higher survival of larger lineages resulting from reduced competition with other herbivores.[329]
  • Evidence indicating that Miocene hipparions from Maragheh (Iran) were either grass-dominated mixed feeders or grazers is presented by Niknahad et al. (2023).[330]
  • Description of new fossil material of hipparionines from the late Miocene to early Pliocene deposits of the Haritalyangar area (Himachal Pradesh, India), including the first record of Proboscidipparion from the Siwaliks, is published by Sankhyan et al. (2023).[331]
  • A study on the Hipparion tracks from the Laetoli site (Tanzania), and on their implications for the knowledge of digit loss in the evolutionary history of horses, is published by Vincelette et al. (2023), who find no evidence that distal portions of the accessory digits are retained in the feet of modern horses, argue that absence of frog impressions in Laetoli trackways does not prove the absence of a frog by itself, and report evidence of the presence of frog impressions in other footprints of tridactyl equids.[332]
  • Revision of the Pliocene and Early Pleistocene hipparionin equid species from western Eurasia is published by Cirilli et al. (2023).[333]
  • Singh et al. (2023) describe fossil material of a horse from the Upper Siwaliks of India, and interpret its anatomy as consistent with that of Equus sivalensis, extending the temporal distribution of this species into the latest Pliocene.[334]
  • Revision of Equus major, based on data from fossil material from the Early Pleistocene sites Pardines and Senèze (France), is published by Cirilli, Saarinen & Bernor (2023), who interpret E. major as larger than any other Early Pleistocene Eurasian species belonging to the genus Equus, comparable in size with Equus suessenbornensis, with a browse-dominated to mixed-feeding diet.[335]

Other laurasiatherians

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Berracotherium[336]

Gen. et sp. nov

Valid

Fernández et al.

Middle Eocene-early Oligocene

Quebrada de Los Colorados Formation

 Argentina

A member of Pyrotheria belonging to the family Pyrotheriidae. The type species is B. koimeterion.

Hapalodectes paradux[337] Sp. nov Lopatin Paleocene Naran Bulak Formation  Mongolia A mesonychian belonging to the family Hapalodectidae
Maocyon[338] Gen. et sp. nov Averianov et al. Eocene Youganwo Formation  China A hyaenodont belonging to the family Hyainailouridae. The type species is M. peregrinus.
Micrauchenia[339] Gen. et sp. nov Valid Püschel et al. Late Miocene Bahía Inglesa Formation  Chile A member of Litopterna belonging to the family Macraucheniidae. The type species is M. saladensis.

Pachyrukhos ngenwinkul[340]

Sp. nov

Valid

Solórzano et al.

Miocene (Santacrucian)

Cura-Mallín Group

 Chile

A notoungulate belonging to the family Hegetotheriidae and the subfamily Pachyrukhinae.

Pascualhyrax[341]

Gen. et sp. nov

Valid

Ferro et al.

Eocene (Bartonian)

Quebrada de los Colorados Formation

 Argentina

An "archaeohyracid" typotherian notoungulate. Genus includes new species P. irqi.

Prodissopsalis jimenezi[342]

Sp. nov

Valid

Salesa et al.

Eocene (Bartonian)

Mazaterón Formation

 Spain

A hyaenodont belonging to the family Hyaenodontidae.

Promylophis[343]

Gen. et sp. nov

Shockey et al.

Oligocene (Deseadan)

Salla Beds

 Bolivia

A member of Litopterna belonging to the family Proterotheriidae. The type species is P. cifellii.

Miscellaneous laurasiatherian research

[edit]
  • Carrillo et al. (2023) describe new fossil material of Megadolodus molariformis and Neodolodus colombianus from La Victoria and Villavieja formations (Colombia) and study the phylogenetic affinities of Megadolodus and Neodolodus, recovering them as closely related within the litopternan family Proterotheriidae.[344]
  • A study aiming to determine the optimal neck posture of Macrauchenia patachonica is published by Blanco, Yorio & Montenegro (2023).[345]
  • The first description of the atlas of Macrauchenia patachonica is published by Püschel & Martinelli (2023).[346]
  • Nelson, Engelman & Croft (2023) provide new estimates of body mass of 10 species of notoungulates.[347]
  • Revision of the fossil material and the systematic status of Peripantostylops and Othnielmarshia is published by Vera & Mones (2023).[348]
  • Systematic revisions of the species belonging to the genus Protypotherium are published by Fernández, Fernicola & Cerdeño (2023).[349][350]
  • Systematic revision of the genera Icochilus and Interatherium is published by Fernández, Fernicola & Cerdeño (2023), who consider Icochilus to be a junior synonym of Interatherium, conclude that the genus Interatherium comprises the species I. rodens and I. extensus with wide geographic and temporal distribution, and find that the Santa Cruz Formation cannot be subdivided based on the presence or absence of any species of Interatherium.[351]
  • A study on the phylogenetic relationships of mesotheriid notoungulates is published by Armella & Deforel (2023).[352]
  • A study on the bone histology of Caraguatypotherium munozi, providing evidence of inter-skeletal variation on bone growth rates and marked cyclical growth, is published by Campos-Medina et al. (2023).[353]
  • Fernández-Monescillo et al. (2023) interpret the anatomical variation observed in mesotheres from Monte Hermoso (Argentina) as consistent with ontogenetic and individual variation within a single species Pseudotypotherium exiguum.[354]
  • Redescription and a study on the affinities of Tegehotherium burmeisteri is published by Seoane, Cerdeño & Gaetano (2023), who name new clades Hemihegetotheriomorpha and Pachyrukhini.[355]
  • Revision of the litoptern and notoungulate fossil material from the Pampean Region of Argentina present in the Santiago Roth Collections housed in Geneva and Zurich, providing new information on the anatomy of Macrauchenia patachonica, is published by Carrillo & Püschel (2023).[356]
  • Vera & Reguero (2023) revise the fossil material of Paleogene South American native ungulates from the lower level of Cerro Pan de Azúcar (Argentina) collected by Santiago Roth in 1897, describe additional specimens from other historical collections from sites in the Chubut river valley, and reevalute the taxonomy of the species endemic to the Cerro Pan de Azúcar locality, interpreting Monolophodon minutum as a junior synonym of Henricosbornia lophodonta.[357]
  • Matsui & Pyenson (2023) describe a molar of a member of the genus Desmostylus from the Miocene (Aquitanian) Skooner Gulch Formation (California, United States), providing evidence that the specialized columnar teeth morphology of Desmostylus persisted for more than 15 million years.[358]
  • Bertrand et al. (2023) describe virtual endocasts of members of the genus Trogosus from the middle Eocene of North America, and report the presence of characteristics that could unite Tillodontia with Pantodonta and Arctocyonidae, probable adaptations to terrestrial lifestyle, and a relatively small neocortex which could have negatively impacted the abilities of Trogosus to compete with artiodactyls and avoid predation.[359]
  • Solé et al. (2023) reinstate Hyaenodictis as a genus distinct from Dissacus, and describe new fossil material of Hyaenodictis raslanloubatieri and H. rougierae from the Eocene (Ypresian) sites of La Borie and Palette (France), providing evidence that these mesonychids were digitigrade in posture and relatively cursorial in locomotion.[360]
  • Kort & Jones (2023) study the mobility of lumbar vertebrae of Patriofelis and Limnocyon, and interpret their findings as indicating that the revolute, interlocking zygapophyses of the studied vertebrae did not restrict dorsoventral flexion and extension of the spine, and their more likely function was to stabilize lumbar vertebrae against shear forces and disarticulation.[361]

Xenarthrans

[edit]

Cingulatans

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Andinoglyptodon[362]

Gen. et sp. nov

Salas-Gismondi et al.

Pliocene

El Descanso Formation

 Peru

A glyptodont. The type species is A. mollohuancai.

Plohophorus avellaneda[363]

Sp. nov

Valid

Quiñones et al.

Latest Pliocene–earliest Pleistocene

El Polvorín Formation

 Argentina

A glyptodont.

Cingulatan research

[edit]
  • A study on the skull anatomy of specimens of Glyptodon, Doedicurus, Neosclerocalyptus and Panochthus from the Pampean Region of Argentina present in the Santiago Roth Collections housed in Europe is published by Christen, Sánchez-Villagra & Le Verger (2023), who evaluate the implications of the studied cranial characters to evolutionary hypotheses concerning relationships among Pleistocene glyptodonts.[364]
  • Troyelli et al. (2023) present the first digital reconstruction of the endocranial cavity of Propalaehoplophorus australis.[365]
  • Fossil material of Glyptotherium cylindricum representing the most complete Central American glyptodontine material reported to date is described from the latest Pleistocene of Guatemala by Cuadrelli et al. (2023).[366]
  • Barasoain et al. (2023) describe new fossil material of Epipeltephilus kanti from the Miocene Loma de Las Tapias Formation (Argentina), representing the youngest record of Peltephilidae reported to date.[367]
  • New collection of dasypodid osteoderms, identified as belonging to armadillos with strong affinities with taxa from Late Miocene localities in northwestern Argentina, is described from the Miocene Toro Negro Formation (La Rioja Province, Argentina) by Brandoni, Barasoain & González Ruiz (2023).[368]
  • A study on the shape variation of osteoderms of members of Dasypodini is published by Salgado-Ahumada et al. (2023), who interpret their findings as supporting the referral of disarticulated osteoderms from the Guanaco and Ituzaingó formations (Argentina) to the genus Dasypus, confirming its presence in the late Miocene.[369]

Pilosans

[edit]

Pilosan research

[edit]
  • A study on the dietary adaptations of Late Pleistocene and Early Holocene giant ground sloths belonging to the families Nothrotheriidae, Megatheridae, Mylodontidae and Megalonychidae is published by Dantas, Campbell & McDonald (2023).[370]
  • Evidence of niche differentiation between extinct giant sloths from the Late Pleistocene of the Brazilian Intertropical Region is presented by Santos, Mcdonald & Dantas (2023), who interpret megalonychids and nothrotheriids as mainly climbers, mylodontines as mainly diggers, and scelidotheres and megatheriids as strictly terrestrial.[371]
  • Varela et al. (2023) study the mandibles of fossil sloths, modeling the actions of the major muscles involved in mastication, and report that stress distribution and strain energy values differed between taxa predicted to be grazers and those predicted to be browsers; the authors also report findings indicating that sloths which had first tooth with a caniniform morphology did not use it for strenuous activities such as food processing.[372]
  • Miño-Boilini & Brandoni (2023) identify fossil material of a member of the genus Nematherium from the Honda Group (Colombia), extending known geographic range of members of this genus into the northern part of South America.[373]
  • Description of the skull anatomy of Schismotherium fractum is published by Gaudin et al. (2023), who confirm that S. fractum was a taxon distinct from Pelecyodon cristatus.[374]
  • Fossil material of a juvenile megalonychid, interpreted as likely belonging to the species Ahytherium aureum and bearing marks indicating that it was fed on (and possibly predated on) by a large felid, is described from the Engrunado cave (Bahia, Brazil) by da Costa et al. (2023).[375]
  • De Iuliis et al. (2023) consider Eucholoeops fronto and E. lafonei to be likely junior synonyms of Eucholoeops ingens, and consider Eucholoeops latifrons to be likely distinct from E. ingens.[376]
  • A well-preserved fetus of Nothrotherium maquinense is described from the Toca da Boa Vista cave (Brazil) by Pujos et al. (2023), who interpret the studied specimen as indicating that N. maquinense gave birth to a single offspring at a time, that the newborn was approximately one-third the length of its mother, and that the newborn was likely already capable of feeding on solid food after a short period of lactation.[377]

General xenarthran research

[edit]
  • New estimates of the body mass of Catonyx cuvieri, Eremotherium laurillardi, Glyptotherium sp., Glossotherium phoenesis, Holmesina paulacoutoi, Nothrotherium maquinense, Ocnotherium giganteum, Pachyarmatherium brasiliense, Pampatherium humboldti and Valgipes bucklandi are presented by Barbosa et al. (2023).[378]

Other eutherians

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Aenigmictis[379]

Gen. et sp. nov

Valid

Meehan & Korth

 United States
( Nebraska)

A member of Leptictida. The type species is A. magnamolaris.

Bayshinoryctes[380]

Gen. et sp. nov

Lopatin & Averianov

Late Cretaceous (Turonian–Santonian)

Bayan Shireh Formation

 Mongolia

A stem placental. The type species is B. shuvalovi.

Didelphodus caloris[381]

Sp. nov

Valid

Gingerich, Folie & Smith

Eocene (Wasatchian)

 United States
( Wyoming)

A member of the family Cimolestidae.

Europotamogale[382] Gen. et sp. nov Disputed Crespo, Cruzado-Caballero, & Castillo Pliocene  Spain A placental of uncertain affinities. The type species is E. melkarti. Originally described as member of Afrosoricida; Furió, Minwer-Barakat & García-Alix (2024) reinterpreted its fossil material as remains of a water-mole of the genus Archaeodesmana.[383]

Microtherulum[384]

Gen. et sp. nov

Valid

Wang & Wang

Early Cretaceous

Jiufotang Formation

 China

An early eutherian of uncertain affinities. The type species is M. oneirodes.

Naranius hengdongensis[385]

Sp. nov

Valid

Ting, Wang & Meng

Early Eocene

Lingcha Formation

 China

A member of the family Cimolestidae.

Sikuomys[386]

Gen. et sp. nov

Valid

Eberle et al.

Late Cretaceous (Campanian)

Prince Creek Formation

 United States
( Alaska)

A eutherian related to Gypsonictops. The type species is S. mikros.

Miscellaneous eutherian research

[edit]

Metatherians

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Acrobates magicus[388]

Sp. nov

In press

Fabian et al.

Miocene

Riversleigh World Heritage Area

 Australia

A relative of the feathertail glider.

Acrobates pettitorum[388]

Sp. nov

In press

Fabian et al.

Miocene

Riversleigh World Heritage Area

 Australia

A relative of the feathertail glider.

Ambulator[389]

Gen. et comb. nov

Valid

Van Zoelen et al.

Pliocene

Tirari Formation

 Australia

A member of the family Diprotodontidae. The type species is "Zygomaturus" keanei Stirton (1967).

Archerus[390]

Gen. et sp. nov

Valid

Myers & Crosby

Miocene

Riversleigh World Heritage Area

 Australia

A member of the family Phalangeridae. The type species is A. johntoniae.

Bohra planei[391]

Sp. nov

Valid

Prideaux & Warburton

Pliocene

Otibanda Formation

 Papua New Guinea

Chunia faciaintermedius[392]

Sp. nov

Case

Oligocene

Etadunna Formation

 Australia

A member of the family Ektopodontidae.

Chunia minkinensis[392]

Sp. nov

Case

Oligocene

Etadunna Formation

 Australia

A member of the family Ektopodontidae.

Chunia pledgei[393]

Sp. nov

Crichton et al.

Oligocene

 Australia

A member of the family Ektopodontidae.

Distoechurus georginae[388]

Sp. nov

In press

Fabian et al.

Miocene

Riversleigh World Heritage Area

 Australia

A relative of the feather-tailed possum.

Distoechurus jeanesorum[388]

Sp. nov

In press

Fabian et al.

Oligocene

Riversleigh World Heritage Area

 Australia

A relative of the feather-tailed possum.

Enigmaleo[394]

Gen. et sp. nov

Gillespie

Early Miocene

Riversleigh World Heritage Area

 Australia

A member of the family Thylacoleonidae. The type species is E. archeri.

Eomicrobiotherium diluculum[395]

Sp. nov

Chornogubsky et al.

Eocene

Las Flores Formation

 Argentina

A member of the family Microbiotheriidae.

Guggenheimia glykeia[395]

Sp. nov

Chornogubsky et al.

Eocene

Las Flores Formation

 Argentina

A member of Didelphimorphia belonging to the family Protodidelphidae.

Lekaneleo myersi[394]

Sp. nov

Gillespie

Middle Miocene

Riversleigh World Heritage Area

 Australia

A member of the family Thylacoleonidae.

Lumakoala[396]

Gen. et sp. nov

Crichton et al.

Oligocene

 Australia

Probably member of the family Phascolarctidae. The type species is L. blackae.

Lutreolina tonnii[397]

Sp. nov

Valid

Goin & de los Reyes

Pleistocene

 Argentina

A species of Lutreolina.

Malleodectes? wentworthi[398]

Sp. nov

Churchill et al.

Miocene

Riversleigh World Heritage Area

 Australia

A member of Dasyuromorphia belonging to the family Malleodectidae.

Mukupirna fortidentata[399] Sp. nov Crichton et al. Oligocene  Australia A member of the family Mukupirnidae.
Nemolestes lagunafriensis[400] Sp. nov Valid Rangel et al. Mid Eocene  Argentina A member of Sparassodonta.

Ngathachunia[392]

Gen. et comb. nov

Case

Oligocene

 Australia

A member of the family Ektopodontidae; a new genus for "Chunia" omega.

Silvenator[401] Gen. et sp. nov Rangel, Carneiro & Oliveira Early Eocene Itaboraí Basin  Brazil A member of Sparassodonta. Genus includes "Nemolestes" brasiliensis Rangel et al. (2023).[400]

Urrayira[402]

Gen. et sp. nov

Valid

Cramb et al.

Pleistocene (Chibanian)

 Australia

A member of Dasyuromorphia belonging or related to the family Dasyuridae. The type species is U. whitei.

Metatherian research

[edit]
  • A study on the ecomorphological diversity of the Late Cretaceous metatherians from North America, based on data from their teeth, is published by Brannick et al. (2023), who interpret their findings as indicative of a wide range of dietary niches in the studied metatherians, with moderately high and stable diversity of dental morphology and diets relative to other mammalian clades.[403]
  • A study on the affinities of metatherians from the Paleogene Itaboraí Basin (Brazil) is published by Carneiro & Oliveira (2023).[404]
  • Engelman & Croft (2023) redescribe partial skull of an unusual carnivorous metatherian from the Miocene-Pliocene Santa María Group (Catamarca Province, Argentina), representing the seventh carnivorous metatherian taxon from the late Cenozoic of northwestern Argentina, and interpret it as most likely representing a small-bodied sparassodont taxon.[405]
  • Guimarães et al. (2023) describe a large canine of a member of the family Proborhyaenidae from the Eocene Guabirotuba Formation (Brazil), representing the largest mammalian predator of the Guabirotuba Fauna reported to date and expanding known geographical range of proborhyaenids.[406]
  • Suarez et al. (2023) redescribe the skull of Anachlysictis gracilis and propose a new reconstruction of the external morphology of its head.[407]
  • A study on the skull and likely vision of Thylacosmilus atrox is published by Gaillard, MacPhee & Forasiepi (2023), who find that, while changes in the skull anatomy related to the growth of the canines of this sparassodont resulted in a divergent orbit orientation, frontation and verticality of the orbits compensated for their low convergence and made it possible to partially preserve binocularity.[408]
  • Gônet et al. (2023) present a model which can be used to determine posture from humeral parameters in extant mammals, and use it to infer a crouched posture for Peratherium cuvieri.[409]
  • Two new specimens of Orhaniyeia nauta, providing new information on the anatomy of this species and on the affinities of anatoliadelphyids, are described from the Eocene Uzunçarşıdere Formation (Turkey) by Beard et al. (2023).[410]
  • A study on the affinities of Estelestes ensis is published by Goin et al. (2023).[411]
  • New fossil material of didelphimorphian and paucituberculatan marsupials, including the first records of palaeothentines and abderitids from the Brazilian Amazonia, is described from the Miocene Solimões Formation by Stutz et al. (2023).[412]
  • A study on the bone histology of Nimbadon lavarackorum, providing evidence that this marsupial experienced cyclical growth rates and needed at least 7–8 years to reach skeletal maturity, is published by Chinsamy et al. (2023).[413]
  • Evidence from tooth microwear and stable isotope analysis of the fossil material of Nimbadon lavarackorum from the Riversleigh World Heritage Area , interpreted as indicative of a high proportion of fruit in the diet, is presented by DeSantis et al. (2023).[414]
  • A study on the diets of Pleistocene marsupial herbivores, inferred from calcium and strontium isotope compositions of fossils from Wellington Caves and the Bingara region (New South Wales, Australia), is published by Koutamanis et al. (2023), who interpret their findings as indicative of small home ranges and a diversity of dietary niches of the studied marsupials.[415]

Monotremes

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Patagorhynchus[416]

Gen. et sp. nov

Valid

Chimento et al.

Late Cretaceous (Maastrichtian)

Chorrillo Formation

 Argentina

The type species is P. pascuali.

Monotreme research

[edit]

Other mammals

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Mirusodens[417]

Gen. et sp. nov

Valid

Mao et al.

Middle Jurassic (Bathonian–Callovian)

 China

A member of Euharamiyida. The type species is M. caii.

Spelaeomolitor[418]

Gen. et sp. nov

Valid

Martin et al.

Early Cretaceous

 Germany

A stem tribosphenidan mammal. The type species is S. speratus.

Other mammalian research

[edit]
  • A study on the fossil material of eutriconodontans from the Early Cretaceous Teete vertebrate assemblage (Sakha, Russia), assigned to representatives of Sangarotherium aquilonium and two species of Gobiconodon (including the largest species of this genus known from Asia), is published by Averianov et al. (2023), who interpret the studied fossils as supporting the existence of a dispersal route from Asia to North America through Beringia in the Early Cretaceous.[419]
  • Han et al. (2023) describe entangled specimens of Repenomamus robustus and Psittacosaurus lujiatunensis from the Lujiatun Member of the Yixian Formation (China), and interpret the studied specimens as likely locked in combat as a result of the predation attempt on the part of the mammal.[420]
  • Description of the petrosal and inner ear morphology of a probable member of the genus Astroconodon from the Lower Cretaceous Cloverly Formation (Montana, United States) is published by Hoffmann et al. (2023).[421]
  • Krause & Hoffmann (2023) provisionally assign a caudal vertebra from the Anembalemba Member of the Upper Cretaceous Maevarano Formation (Madagascar) to Vintana sertichi, representing the first known postcranial material of this species.[422]
  • Won, So & Jon (2023) describe a partial skeleton of a multituberculate from the Lower Cretaceous Sinuiju Formation, representing the first finding of a Mesozoic mammal from North Korea reported to date.[423]
  • Luo & Martin (2023) describe new fossil material (mandibles and teeth) of Henkelotherium guimarotae, reporting evidence of late eruption of several molars after completion of replacement of antemolar teeth, possibly indicating longer-lived life or different life-history traits than in crown therians.[424]

General mammalian research

[edit]
  • A study on the masticatory muscle features of extant and extinct mammals is published by Ercoli et al. (2023), who find that early mammaliaforms and mammals had similar muscle proportions to those of living carnivores, and find similarities in the masticatory muscle features of rodents and derived extinct euungulates and diprotodonts.[425]
  • Martinez et al. (2023) find no evidence of a significant relation between the relative surface area of the maxilloturbinal and physiological traits such as metabolism and body temperature in extant mammals, and interpret their findings as challenging the hypothesis positing that respiratory turbinals reflect the thermal and metabolic physiology in extant and extinct tetrapods (especially in mammals).[426]
  • Claytor et al. (2023) describe new fossil material of mammals living within the first 80,000 years of the Paleocene from the Hell Creek region of northeastern Montana (United States), providing new information on the earliest phases of mammalian recovery after the Cretaceous–Paleogene extinction event.[427]
  • A study on the timing of the placental diversification, as inferred from genomic data, is published by Foley et al. (2023), who interpret their findings as indicative of diversification of placentals coinciding with the breakup of continental landmasses and rising sea levels in the Late Cretaceous, and a second pulse of diversification after the Cretaceous–Paleogene extinction event.[428]
  • Carlisle et al. (2023) estimate the timing of the origin of placental clades on the basis of the fossil record, arguing that Placentalia likely originated in the Late Cretaceous, but the majority of placental orders likely originated around or after the Cretaceous-Paleogene boundary, possibly during the Paleocene–Eocene Thermal Maximum.[429]
  • Benevento et al. (2023) study changes in species richness of terrestrial North American mammals throughout the Cretaceous and the Cenozoic, and interpret their findings as indicating that mammals of all body sizes, rather than only large-bodied ones, diversified substantially during the Cretaceous-Paleogene transition, and that increases in the diversity of small-bodied species were similar to those of larger ones.[430]
  • Friscia, Borths & Croft (2023) compare the evolutionary trajectories of sparassodonts and hyaenodonts, and find that both groups became increasingly carnivorous during the Cenozoic, but only in hyaenodonts this change corresponded with increase in body size.[431]
  • A study on the competition for prey between Miocene mammalian and reptilian predators at La Venta (Colombia) is published by Wilson & Parker (2023), who interpret their findings as indicative of limited competition for resources among the carnivore guild compared to the most similar extant communities, a dominant role of crocodyliform predators in the studied community, and low predation pressure which might have resulted in overpopulation leading to feeding stress in the notoungulate species Pericotoxodon platignathus.[432]
  • Evidence indicating that the greatest change in faunal composition of the mammalian assemblage from the Miocene Dove Spring Formation (California, United States) coincided with basin rotation and translation during the tectonic history of the studied geological formation is presented by Hardy & Badgley (2023).[433]
  • Revision of the fossil record of mammals from the Miocene to Pleistocene Salicas Formation (Argentina) is published by Ruiz-Ramoni et al. (2023).[434]
  • A study on biodiversity losses in large, eastern African mammalian herbivore fauna during the past 7.4 million years is published by Lauer et al. (2023), who report that large herbivore diversity losses occurring before the mid-Pleistocene were related to environmental changes and involved no significant threat to community ecological function, but the biodiversity losses that followed the interval of 1.9–1.7 million years ago threatened the assembly and function of large herbivore communities, which might have been related to the increase in the variability and aridity of eastern African climates.[435]
  • Evidence of gradual decrease in the abundance of large-sized mammals in the African fossil record over the past 4 million years is presented by Bibi & Cantalapiedra (2023).[436]
  • Evidence from stable carbon, nitrogen and sulfur isotope ratios of bone collagen of reindeers, bovids and horses from the Middle and Upper Paleolithic site of Les Cottés (France), interpreted as indicative of greater behavioural plasticity of Late Pleistocene reindeers compared to other studied ungulates (including significant consumption of lichen, probable larger total range and greater variability among reindeers themselves), is presented by Britton et al. (2023).[437]
  • Evidence from stable isotope composition of collagen and bioapatite of fossil bones of late Pleistocene mammals from the Arroyo del Vizcaíno site (Uruguay), interpreted as indicative of diverse dietary preferences of herbivores and supporting the existence of niche partitioning among closely related taxa, is presented by Varela et al. (2023).[438]
  • A study on the paleoecology of large mammals from the Pleistocene of southern Brazilian Pampa, providing evidence of the studied mammals living mostly in grassland environments with likely seasonal climate and feeding on mainly on cool-season grasses, is published by Carrasco et al. (2023).[439]
  • A study on the age of fossils of eight most common mammal species (coyotes and seven extinct species) from the La Brea Tar Pits (California, United States) is published by O'Keefe et al. (2023), who find that seven of the studied species disappeared before the onset of the Younger Dryas, that Paramylodon harlani and Camelops hesternus disappeared before the other five species, that the disappearances of Smilodon fatalis, Aenocyon dirus, Panthera atrox, Bison antiquus and Equus occidentalis were contemporaneous, and that the disappearances were likely primarily caused by large-scale fires, which in turn might have been caused by humans igniting fires in a warming and increasingly arid climate.[440]
  • A study on the population trajectories of members of extant terrestrial megafauna throughout the Quaternary, as indicated by genomic data, is published by Bergman et al. (2023), who find evidence of population declines in the majority of the studied species, and interpret the pattern of their decline as better explained by expansion Homo sapiens than by climate changes.[441]
  • Seeber et al. (2023) report the discovery of ancient environmental DNA of multiple mammoth and woolly rhinoceros individuals from recent lake sediments from the Yamal Peninsula (Russia), far from the time likely to host living individuals, and argue that physical processes, rather than presence of live organisms, are responsible for the recovery of the studied DNA.[442]

References

[edit]
  1. ^ Lambert, W. D. (2023). "Implications of discoveries of the shovel-tusked gomphothere Konobelodon (Proboscidea, Gomphotheriidae) in Eurasia for the status of Amebelodon with a new genus of shovel-tusked gomphothere, Stenobelodon". Journal of Vertebrate Paleontology. 43 (1). e2252021. doi:10.1080/02724634.2023.2252021. S2CID 265506991.
  2. ^ Sanders, W. J. (2023). Evolution and fossil record of African Proboscidea. CRC Press. pp. 1–370. doi:10.1201/b20016. ISBN 9781482254754. S2CID 259625811.
  3. ^ Saarinen, J.; Lister, A. M. (2023). "Fluctuating climate and dietary innovation drove ratcheted evolution of proboscidean dental traits". Nature Ecology & Evolution. 7 (9): 1490–1502. Bibcode:2023NatEE...7.1490S. doi:10.1038/s41559-023-02151-4. PMC 10482678. PMID 37580434. S2CID 260898122.
  4. ^ Choudhary, D.; Jukar, A. M.; Patnaik, R.; Singh, N. A.; Singh, N. P.; Sharma, K. M. (2023). "The first report of cf. Zygolophodon (Mammalia, Proboscidea, Mammutidae) from the Upper Miocene of Kutch, India". Journal of Vertebrate Paleontology. 42 (4). e2197959. doi:10.1080/02724634.2023.2197959. S2CID 258338571.
  5. ^ Konidaris, G. E.; Aytek, A. I.; Yavuz, A. Y.; Tarhan, E.; Alçiçek, M. C. (2023). "First report of "Mammut" (Mammalia, Proboscidea) from the Upper Miocene of Turkey". Journal of Vertebrate Paleontology. 42 (6). e2222784. doi:10.1080/02724634.2023.2222784. S2CID 261417153.
  6. ^ von Koenigswald, W.; Widga, C.; Göhlich, U. (2023). "New mammutids (Proboscidea) from the Clarendonian and Hemphillian of Oregon – a survey of Mio-Pliocene mammutids from North America". Bulletin of the Museum of Natural History, University of Oregon. 30: 1–63.
  7. ^ Li, C.-X.; Chen, J.; Wang, S.-Q. (2023). "Reassessment of Trilophodon connexus Hopwood, 1935 and attributing it to the Choerolophodontidae". Vertebrata PalAsiatica. 62 (1): 33–46. doi:10.19615/j.cnki.2096-9899.230917.
  8. ^ Wang, S.-Q.; Li, C.; Li, Y.; Zhang, X. (2023). "Gomphotheres from Linxia Basin, China, and their significance in biostratigraphy, biochronology, and paleozoogeography". Palaeogeography, Palaeoclimatology, Palaeoecology. 613. 111405. Bibcode:2023PPP...61311405W. doi:10.1016/j.palaeo.2023.111405. S2CID 255906489.
  9. ^ Li, C.; Deng, T.; Wang, Y.; Sun, F.; Wolff, B.; Jiangzuo, Q.; Ma, J.; Xing, L.; Fu, J.; Zhang, J.; Wang, S.-Q. (2023). "The trunk replaces the longer mandible as the main feeding organ in elephant evolution". eLife. 12. RP90908. doi:10.7554/eLife.90908. PMC 11189625. PMID 38900028.
  10. ^ Neves, G. A. S.; Ghilardi, A. M.; Araújo, F. T. F.; Cherkinsky, A.; Dantas, M. A. T. (2023). "Annual isotopic diet (δ13C, δ18O) of Notiomastodon platensis in the Brazilian Intertropical region during the Last Glacial Maximum". Journal of South American Earth Sciences. 131. 104592. Bibcode:2023JSAES.13104592N. doi:10.1016/j.jsames.2023.104592. S2CID 261857042.
  11. ^ Konidaris, G. E.; Lechner, T.; Kampouridis, P.; Böhme, M. (2023). "Deinotherium levius and Tetralophodon longirostris (Proboscidea, Mammalia) from the Late Miocene hominid locality Hammerschmiede (Bavaria, Germany), and their biostratigraphic significance for the terrestrial faunas of the European Miocene". Journal of Mammalian Evolution. 30 (4): 923–961. doi:10.1007/s10914-023-09683-3. S2CID 262095186.
  12. ^ Romano, M.; Bellucci, L.; Antonelli, M.; Manucci, F.; Palombo, M. R. (2023). "Body mass estimate of Anancus arvernensis (Croizet and Jobert 1828): comparison of the regression and volumetric methods". Journal of Quaternary Science. 38 (8): 1357–1381. Bibcode:2023JQS....38.1357R. doi:10.1002/jqs.3549. S2CID 259438457.
  13. ^ Lin, H.; Hu, J.; Baleka, S.; Yuan, J.; Chen, X.; Xiao, B.; Song, S.; Du, Z.; Lai, X.; Hofreiter, M.; Sheng, G. (2023). "A genetic glimpse of the Chinese straight-tusked elephants". Biology Letters. 19 (7). 20230078. doi:10.1098/rsbl.2023.0078. PMC 10353889. PMID 37463654.
  14. ^ Díez-del-Molino, D.; Dehasque, M.; Chacón-Duque, J. C.; Pečnerová, P.; Tikhonov, A.; Protopopov, A.; Plotnikov, V.; Kanellidou, F.; Nikolskiy, P.; Mortensen, P.; Danilov, G. K.; Vartanyan, S.; Gilbert, M. T. P.; Lister, A. M.; Heintzman, P. D.; van der Valk, T.; Dalén, L. (2023). "Genomics of adaptive evolution in the woolly mammoth". Current Biology. 33 (9): 1753–1764.e4. Bibcode:2023CBio...33E1753D. doi:10.1016/j.cub.2023.03.084. hdl:11250/3145739. PMID 37030294. S2CID 258011154.
  15. ^ Petrova, E. A.; Voyta, L. L.; Bessudnov, A. A.; Sinitsyn, A. A. (2023). "An integrative paleobiological study of woolly mammoths from the Upper Paleolithic site Kostenki 14 (European Russia)". Quaternary Science Reviews. 302. 107948. Bibcode:2023QSRv..30207948P. doi:10.1016/j.quascirev.2022.107948. S2CID 255934581.
  16. ^ Kowalik, N.; Anczkiewicz, R.; Müller, W.; Spötl, C.; Bondioli, L.; Nava, A.; Wojtal, P.; Wilczyński, J.; Koziarska, M.; Matyszczak, M. (2023). "Revealing seasonal woolly mammoth migration with spatially-resolved trace element, Sr and O isotopic records of molar enamel". Quaternary Science Reviews. 306. 108036. Bibcode:2023QSRv..30608036K. doi:10.1016/j.quascirev.2023.108036. S2CID 257594840.
  17. ^ Cherney, M. D.; Fisher, D. C.; Auchus, R. J.; Rountrey, A. N.; Selcer, P.; Shirley, E. A.; Beld, S. G.; Buigues, B.; Mol, D.; Boeskorov, G. G.; Vartanyan, S. L.; Tikhonov, A. N. (2023). "Testosterone histories from tusks reveal woolly mammoth musth episodes". Nature. 617 (7961): 533–539. Bibcode:2023Natur.617..533C. doi:10.1038/s41586-023-06020-9. PMID 37138076. S2CID 258485513.
  18. ^ Larramendi, Asier (2023-12-10). "Estimating tusk masses in proboscideans: a comprehensive analysis and predictive model". Historical Biology: 1–14. doi:10.1080/08912963.2023.2286272. ISSN 0891-2963. S2CID 266182491.
  19. ^ Hautier, L.; Gomes Rodrigues, H.; Ferreira-Cardoso, S.; Emerling, C. A.; Porcher, M.-L.; Asher, R. J.; Portela Miguez, R.; Delsuc, F. (2023). "From teeth to pad: tooth loss and development of keratinous structures in sirenians". Proceedings of the Royal Society B: Biological Sciences. 290 (2011). 20231932. doi:10.1098/rspb.2023.1932. PMC 10685118. PMID 38018114.
  20. ^ Voss, M.; Hampe, O.; Mahlow, K.; Vilanova, J. C. (2023). "New findings of Prototherium ausetanum (Mammalia, Pan-Sirenia) from paving stones in Girona (Catalonia, Spain)?". Fossil Record. 26 (1): 135–149. Bibcode:2023FossR..26..135V. doi:10.3897/fr.26.99096.
  21. ^ Gheerbrant, E. (2023). "Ancestral radiation of paenungulate mammals (Paenungulatomorpha)—new evidence from the Paleocene of Morocco". Journal of Vertebrate Paleontology. 42 (5). e2197971. doi:10.1080/02724634.2023.2197971. S2CID 258384319.
  22. ^ Kampouridis, P.; Hartung, J.; Augustin, F. J.; El Atfy, H.; Ferreira, G. S. (2023). "Dental eruption and adult dentition of the enigmatic ptolemaiid Qarunavus meyeri from the Oligocene of the Fayum Depression (Egypt) revealed by micro-computed tomography clarifies its phylogenetic position". Zoological Journal of the Linnean Society. 199 (4): 1078–1091. doi:10.1093/zoolinnean/zlad065.
  23. ^ Lihoreau, F.; Marjanac, L.; Marjanac, T.; Erdal, O.; Antoine, P.-O. (2023). "A late Eocene palaeoamasiine embrithopod (Mammalia, Afrotheria) from the Adriatic realm (Island of Rab, Croatia)". Palæovertebrata. 47 (1). e1. doi:10.18563/pv.47.1.e1. S2CID 266239601.
  24. ^ Sevim-Erol, A.; Begun, D. R.; Sözer, Ç. S.; Mayda, S.; van den Hoek Ostende, L. W.; Martin, R. M. G.; Alçiçek, M. C. (2023). "A new ape from Türkiye and the radiation of late Miocene hominines". Communications Biology. 6 (1). 842. doi:10.1038/s42003-023-05210-5. PMC 10447513. PMID 37612372.
  25. ^ Marivaux, L.; Negri, F. R.; Antoine, P.-O.; Stutz, N. S.; Condamine, F. L.; Kerber, L.; Pujos, F.; Santos, R. V.; Alvim, A. M. V.; Hsiou, A. S.; Bissaro, M. C.; Adami-Rodrigues, K.; Ribeiro, A. M. (2023). "An eosimiid primate of South Asian affinities in the Paleogene of Western Amazonia and the origin of New World monkeys". Proceedings of the National Academy of Sciences of the United States of America. 120 (28): e2301338120. Bibcode:2023PNAS..12001338M. doi:10.1073/pnas.2301338120. PMC 10334725. PMID 37399374.
  26. ^ a b Kirk, E. C.; Dunn, R. H.; Rodwell, B.; Townsend, K. E. B. (2023). "New specimens of middle Eocene omomyines (Primates, Omomyoidea) from the Uinta Basin of Utah and the Tornillo Basin of Texas, with clarification of the generic status of Ourayia, Mytonius, and Diablomomys". Journal of Human Evolution. 183. 103425. Bibcode:2023JHumE.18303425K. doi:10.1016/j.jhevol.2023.103425. PMID 37734122. S2CID 262125084.
  27. ^ Rust, K.; Ni, X.; Tietjen, K.; Beard, K. C. (2023). "Phylogeny and paleobiogeography of the enigmatic North American primate Ekgmowechashala illuminated by new fossils from Nebraska (USA) and Guangxi Zhuang Autonomous Region (China)". Journal of Human Evolution. 185. 103452. Bibcode:2023JHumE.18503452R. doi:10.1016/j.jhevol.2023.103452. PMID 37935595. S2CID 265048186.
  28. ^ a b Perry, J. M. G.; Dutchak, A. R.; Theodor, J. M. (2023). "New primates from the Eocene of Saskatchewan, Canada: Revision of the primates from the Cypress Hills Formation with description of new taxa". Palaeontologia Electronica. 26 (2). 26.2.20. doi:10.26879/1246.
  29. ^ Métais, G.; Coster, P.; Licht, A.; Ocakoğlu, F.; Beard, K. C. (2023). "Additions to the late Eocene Süngülü mammal fauna in Easternmost Anatolia and the Eocene-Oligocene transition at the periphery of Balkanatolia". Comptes Rendus Palevol. 22 (35): 711–727. doi:10.5852/cr-palevol2023v22a35.
  30. ^ Getahun, D. A.; Delson, E.; Seyoum, C. M. (2023). "A review of Theropithecus oswaldi with the proposal of a new subspecies" (PDF). Journal of Human Evolution. 180. 103373. Bibcode:2023JHumE.18003373G. doi:10.1016/j.jhevol.2023.103373. PMID 37269782. S2CID 259045672.
  31. ^ Monclús-Gonzalo, O.; Alba, D. M.; Duhamel, A.; Fabre, A.-C.; Marigó, J. (2023). "Early euprimates already had a diverse locomotor repertoire: Evidence from ankle bone morphology". Journal of Human Evolution. 181. 103395. Bibcode:2023JHumE.18103395M. doi:10.1016/j.jhevol.2023.103395. PMID 37320961. S2CID 259173506.
  32. ^ Gingerich, P. D. (2023). "Phylogeny and Evolution of North American Notharctinae (Mammalia, Primates) in the Early Eocene of Wyoming". Contributions from the Museum of Paleontology, University of Michigan. 35 (1): 1–33. doi:10.7302/8117.
  33. ^ Pearson, A.; Polly, P. D. (2023). "Temporal lobe evolution in extant and extinct Cercopithecoidea". Journal of Mammalian Evolution. 30 (3): 683–694. doi:10.1007/s10914-023-09664-6. S2CID 259522653.
  34. ^ Towle, I.; Borths, M. R.; Loch, C. (2023). "Tooth chipping patterns and dental caries suggest a soft fruit diet in early anthropoids". American Journal of Biological Anthropology. 183 (2): e24884. doi:10.1002/ajpa.24884. PMID 38093580.
  35. ^ Pickford, M.; Gommery, D.; Ingicco, T. (2023). "Macaque molar from the Red Crag Formation, Waldringfield, England". Fossil Imprint. 79 (1): 26–36. doi:10.37520/fi.2023.003. S2CID 265089167.
  36. ^ Plastiras, C. A.; Thiery, G.; Guy, F.; Alba, D. M.; Nishimura, T.; Kostopoulos, D. S.; Merceron, G. (2023). "Investigating the dietary niches of fossil Plio-Pleistocene European macaques: The case of Macaca majori Azzaroli, 1946 from Sardinia". Journal of Human Evolution. 185. 103454. Bibcode:2023JHumE.18503454P. doi:10.1016/j.jhevol.2023.103454. PMID 37977021. S2CID 265260157.
  37. ^ Proffitt, T.; Reeves, J. S.; Braun, D. R.; Malaivijitnond, S.; Luncz, L. V. (2023). "Wild macaques challenge the origin of intentional tool production". Science Advances. 9 (10). eade8159. Bibcode:2023SciA....9E8159P. doi:10.1126/sciadv.ade8159. PMC 10005173. PMID 36897944.
  38. ^ Post, N. W.; Gilbert, C. C.; Pugh, K. D.; Mongle, C. S. (2023). "Implications of outgroup selection in the phylogenetic inference of hominoids and fossil hominins". Journal of Human Evolution. 184. 103437. Bibcode:2023JHumE.18403437P. doi:10.1016/j.jhevol.2023.103437. PMID 37783198. S2CID 263318706.
  39. ^ Kikuchi, Y. (2023). "Body mass estimates from postcranial skeletons and implication for positional behavior in Nacholapithecus kerioi: Evolutionary scenarios of modern apes". The Anatomical Record. 306 (10): 2466–2483. doi:10.1002/ar.25173. PMID 36753432. S2CID 256663258.
  40. ^ Urciuoli, A.; Alba, D. M. (2023). "Systematics of Miocene apes: State of the art of a neverending controversy". Journal of Human Evolution. 175. 103309. Bibcode:2023JHumE.17503309U. doi:10.1016/j.jhevol.2022.103309. PMID 36716680. S2CID 256386037.
  41. ^ MacLatchy, L. M.; Cote, S. M.; Deino, A. L.; Kityo, R. M. C.; Mugume, A. A. T.; Rossie, J. B.; Sanders, W. J.; Cosman, M. N.; Driese, S. G.; Fox, D. L.; Freeman, A. J.; Jansma, R. J. W.; Jenkins, K. E. H.; Kinyanjui, R. N.; Lukens, W. E.; McNulty, K. P.; Novello, A.; Peppe, D. J.; Strömberg, C. A. E.; Uno, K. T.; Winkler, A. J.; Kingston, J. D. (2023). "The evolution of hominoid locomotor versatility: Evidence from Moroto, a 21 Ma site in Uganda". Science. 380 (6641). eabq2835. doi:10.1126/science.abq2835. PMID 37053310. S2CID 258112292.
  42. ^ Pugh, K. D.; Catalano, S. A.; Pérez de los Ríos, M.; Fortuny, J.; Shearer, B. M.; Vecino Gazabón, A.; Hammond, A. S.; Moyà-Solà, S.; Alba, D. M.; Almécija, S. (2023). "The reconstructed cranium of Pierolapithecus and the evolution of the great ape face". Proceedings of the National Academy of Sciences of the United States of America. 120 (44). e2218778120. Bibcode:2023PNAS..12018778P. doi:10.1073/pnas.2218778120. PMC 10622906. PMID 37844214.
  43. ^ Yi, Z.; Zanolli, C.; Liao, W.; Wang, W. (2023). "Estimates of absolute crown strength and bite force in the lower postcanine dentition of Gigantopithecus blacki" (PDF). Journal of Human Evolution. 175. 103313. Bibcode:2023JHumE.17503313Y. doi:10.1016/j.jhevol.2022.103313. PMID 36709569. S2CID 256379920.
  44. ^ Zanolli, C.; Bouchet, F.; Fortuny, J.; Bernardini, F.; Tuniz, C.; Alba, D. M. (2023). "A reassessment of the distinctiveness of dryopithecine genera from the Iberian Miocene based on enamel-dentine junction geometric morphometric analyses". Journal of Human Evolution. 177. 103326. doi:10.1016/j.jhevol.2023.103326. PMID 36863301. S2CID 257268904.
  45. ^ Smith, T. M.; Arora, M.; Austin, C.; Ávila, J. N.; Duval, M.; Lim, T. T.; Piper, P. J.; Vaiglova, P.; de Vos, J.; Williams, I. S.; Zhao, J.-X.; Green, D. R. (2023). "Oxygen isotopes in orangutan teeth reveal recent and ancient climate variation". eLife. 12. doi:10.7554/eLife.90217. PMC 10942278. PMID 38457350.
  46. ^ Kubat, J.; Nava, A.; Bondioli, L.; Dean, M. C.; Zanolli, C.; Bourgon, N.; Bacon, A.-M.; Demeter, F.; Peripoli, B.; Albert, R.; Lüdecke, T.; Hertler, C.; Mahoney, P.; Kullmer, O.; Schrenk, F.; Müller, W. (2023). "Dietary strategies of Pleistocene Pongo sp. and Homo erectus on Java (Indonesia)". Nature Ecology & Evolution. 7 (2): 279–289. Bibcode:2023NatEE...7..279K. doi:10.1038/s41559-022-01947-0. PMID 36646949. S2CID 244192277.
  47. ^ Koufos, G. D.; Plastiras, C.-A.; David, C. N.; Sagris, D. (2023). "The Late Miocene hominoid Ouranopithecus macedoniensis (Bonis, Bouvrain, Geraads & Melentis, 1974): maxillary deciduous dentition and virtual reconstruction of the unerupted permanent teeth". Comptes Rendus Palevol. 22 (33): 667–688. doi:10.5852/cr-palevol2023v22a33. S2CID 265176590.
  48. ^ Meyer, M. R.; Jung, J. P.; Spear, J. K.; Araiza, I. Fx.; Galway-Witham, J.; Williams, S. A. (2023). "Knuckle-walking in Sahelanthropus? Locomotor inferences from the ulnae of fossil hominins and other hominoids". Journal of Human Evolution. 179. 103355. Bibcode:2023JHumE.17903355M. doi:10.1016/j.jhevol.2023.103355. PMID 37003245. S2CID 257874795.
  49. ^ Vanhoof, M. J. M.; Croquet, B.; De Groote, I.; Vereecke, E. E. (2023). "Principal component and linear discriminant analyses for the classification of hominoid primate specimens based on bone shape data". Royal Society Open Science. 10 (9). 230950. Bibcode:2023RSOS...1030950V. doi:10.1098/rsos.230950. PMC 10509576. PMID 37736524.
  50. ^ Zeller, E.; Timmermann, A.; Yun, K.-S.; Raia, P.; Stein, K.; Ruan, J. (2023). "Human adaptation to diverse biomes over the past 3 million years". Science. 380 (6645): 604–608. Bibcode:2023Sci...380..604Z. doi:10.1126/science.abq1288. PMID 37167387. S2CID 258618448.
  51. ^ Hatala, K. G.; Gatesy, S. M.; Falkingham, P. L. (2023). "Arched footprints preserve the motions of fossil hominin feet" (PDF). Nature Ecology & Evolution. 7 (1): 32–41. Bibcode:2023NatEE...7...32H. doi:10.1038/s41559-022-01929-2. PMID 36604550. S2CID 255466788. Archived (PDF) from the original on 2023-03-04. Retrieved 2023-02-21.
  52. ^ Alger, I.; Dridi, S.; Stieglitz, J.; Wilson, M. L. (2023). "The evolution of early hominin food production and sharing". Proceedings of the National Academy of Sciences of the United States of America. 120 (25): e2218096120. Bibcode:2023PNAS..12018096A. doi:10.1073/pnas.2218096120. PMC 10288599. PMID 37311000.
  53. ^ Plummer, T. W.; Oliver, J. S.; Finestone, E. M.; Ditchfield, P. W.; Bishop, L. C.; Blumenthal, S. A.; Lemorini, C.; Caricola, I.; Bailey, S. E.; Herries, A. I. R.; Parkinson, J. A.; Whitfield, E.; Hertel, F.; Kinyanjui, R. N.; Vincent, T. H.; Li, Y.; Louys, J.; Frost, S. R.; Braun, D. R.; Reeves, J. S.; Early, E. D. G.; Onyango, B.; Lamela-Lopez, R.; Forrest, F. L.; He, H.; Lane, T. P.; Frouin, M.; Nomade, S.; Wilson, E. P.; Bartilol, S. K.; Rotich, N. K.; Potts, R. (2023). "Expanded geographic distribution and dietary strategies of the earliest Oldowan hominins and Paranthropus". Science. 379 (6632): 561–566. Bibcode:2023Sci...379..561P. doi:10.1126/science.abo7452. PMID 36758076. S2CID 256697931. Archived from the original on 2023-02-09. Retrieved 2023-02-09.
  54. ^ Key, A.; Proffitt, T. (2023). "Revising the oldest Oldowan: Updated optimal linear estimation models and the impact of Nyayanga (Kenya)". Journal of Human Evolution. 186. 103468. doi:10.1016/j.jhevol.2023.103468. hdl:10400.1/20320. PMID 38041999.
  55. ^ Braga, J.; Wood, B. A.; Zimmer, V. A.; Moreno, B.; Miller, C.; Thackeray, J. F.; Zipfel, B.; Grine, F. E. (2023). "Hominin fossils from Kromdraai and Drimolen inform Paranthropus robustus craniofacial ontogeny". Science Advances. 9 (18). eade7165. Bibcode:2023SciA....9E7165B. doi:10.1126/sciadv.ade7165. PMC 10156105. PMID 37134165.
  56. ^ O'Brien, K.; Hebdon, N.; Faith, J. T. (2023). "Paleoecological evidence for environmental specialization in Paranthropus boisei compared to early Homo". Journal of Human Evolution. 177. 103325. doi:10.1016/j.jhevol.2023.103325. PMID 36805971. S2CID 256973634.
  57. ^ Ward, C. V.; Hammond, A. S.; Grine, F. E.; Mongle, C. S.; Lawrence, J.; Kimbel, W. H. (2023). "Taxonomic attribution of the KNM-ER 1500 partial skeleton from the Burgi Member of the Koobi Fora Formation, Kenya". Journal of Human Evolution. 184. 103426. Bibcode:2023JHumE.18403426W. doi:10.1016/j.jhevol.2023.103426. PMID 37769373. S2CID 263196863.
  58. ^ Alemseged, Z. (2023). "Reappraising the palaeobiology of Australopithecus". Nature. 617 (7959): 45–54. Bibcode:2023Natur.617...45A. doi:10.1038/s41586-023-05957-1. PMID 37138108. S2CID 258465033.
  59. ^ Mongle, C. S.; Strait, D. S.; Grine, F. E. (2023). "An updated analysis of hominin phylogeny with an emphasis on re-evaluating the phylogenetic relationships of Australopithecus sediba". Journal of Human Evolution. 175. 103311. Bibcode:2023JHumE.17503311M. doi:10.1016/j.jhevol.2022.103311. PMID 36706599. S2CID 256296590.
  60. ^ O'Neill, M. C.; Nagano, A.; Umberger, B. R. (2023). "A three-dimensional musculoskeletal model of the pelvis and lower limb of Australopithecus afarensis". American Journal of Biological Anthropology. 183 (3): e24845. doi:10.1002/ajpa.24845. PMID 37671481. S2CID 261556117.
  61. ^ Wiseman, A. L. A. (2023). "Three-dimensional volumetric muscle reconstruction of the Australopithecus afarensis pelvis and limb, with estimations of limb leverage". Royal Society Open Science. 10 (6). 230356. Bibcode:2023RSOS...1030356W. doi:10.1098/rsos.230356. PMC 10265029. PMID 37325588.
  62. ^ Hamilton, M. I.; Copeland, S. R.; Nelson, S. V. (2023). "A reanalysis of strontium isotope ratios as indicators of dispersal in South African hominins". Journal of Human Evolution. 187. 103480. doi:10.1016/j.jhevol.2023.103480. PMID 38159536.
  63. ^ Delagnes, A.; Galland, A.; Gravina, B.; Bertran, P.; Corbé, M.; Brenet, M.; Hailu, H. B.; Sissay, F. M.; Araya, B. G.; Woldetsadik, M. G.; Boisserie, J.-R. (2023). "Long-term behavioral adaptation of Oldowan toolmakers to resource-constrained environments at 2.3 Ma in the Lower Omo Valley (Ethiopia)". Scientific Reports. 13 (1). 14350. Bibcode:2023NatSR..1314350D. doi:10.1038/s41598-023-40793-3. PMC 10474039. PMID 37658122.
  64. ^ Muttoni, G.; Perini, S.; Melis, R. T.; Mussi, M. (2023). "Chronology of the earliest peopling of the Ethiopian highlands at Melka Kunture pre-dating the 1.925 Ma base of the Olduvai subchron". Quaternary Science Reviews. 319. 108330. Bibcode:2023QSRv..31908330M. doi:10.1016/j.quascirev.2023.108330. S2CID 263694964.
  65. ^ Mussi, M.; Skinner, M. M.; Melis, R. T.; Panera, J.; Rubio-Jara, S.; Davies, T. W.; Geraads, D.; Bocherens, H.; Briatico, G.; Le Cabec, A.; Hublin, J.-J.; Gidna, A.; Bonnefille, R.; Di Bianco, L.; Méndez-Quintas, E. (2023). "Early Homo erectus lived at high altitudes and produced both Oldowan and Acheulean tools". Science. 382 (6671): 713–718. Bibcode:2023Sci...382..713M. doi:10.1126/science.add9115. PMID 37824630. S2CID 263971011.
  66. ^ Gossa, T.; Asrat, A.; Hovers, E.; Tholt, A. J.; Renne, P. R. (2024). "Claims for 1.9–2.0 Ma old early Acheulian and Oldowan occupations at Melka Kunture are not supported by a robust age model". Quaternary Science Reviews. 326. 108506. Bibcode:2024QSRv..32608506G. doi:10.1016/j.quascirev.2024.108506.
  67. ^ Beaudet, A.; de Jager, E. (2023). "Broca's area, variation and taxic diversity in early Homo from Koobi Fora (Kenya)". eLife. 12. RP89054. doi:10.7554/eLife.89054. PMC 10506792. PMID 37721480.
  68. ^ Pobiner, B.; Pante, M.; Keevil, T. (2023). "Early Pleistocene cut marked hominin fossil from Koobi Fora, Kenya". Scientific Reports. 13 (1). 9896. Bibcode:2023NatSR..13.9896P. doi:10.1038/s41598-023-35702-7. PMC 10293199. PMID 37365179.
  69. ^ Mussi, M.; Mendez-Quintas, E.; Barboni, D.; Bocherens, H.; Bonnefille, R.; Briatico, G.; Geraads, D.; Melis, R. T.; Panera, J.; Pioli, L.; Serodio Domínguez, A.; Rubio Jara, S. (2023). "A surge in obsidian exploitation more than 1.2 million years ago at Simbiro III (Melka Kunture, Upper Awash, Ethiopia)". Nature Ecology & Evolution. 7 (3): 337–346. Bibcode:2023NatEE...7..337M. doi:10.1038/s41559-022-01970-1. PMID 36658266. S2CID 256032112.
  70. ^ Muller, A.; Barsky, D.; Sala-Ramos, R.; Sharon, G.; Titton, S.; Vergès, J.-M.; Grosman, L. (2023). "The limestone spheroids of 'Ubeidiya: intentional imposition of symmetric geometry by early hominins?". Royal Society Open Science. 10 (9). 230671. Bibcode:2023RSOS...1030671M. doi:10.1098/rsos.230671. PMC 10480702. PMID 37680494.
  71. ^ Roberts, D. L.; Jarić, I.; Lycett, S. J.; Flicker, D.; Key, A. (2023). "Homo floresiensis and Homo luzonensis are not temporally exceptional relative to Homo erectus". Journal of Quaternary Science. 38 (4): 463–470. Bibcode:2023JQS....38..463R. doi:10.1002/jqs.3498. S2CID 256178800. Archived from the original on 2023-01-17. Retrieved 2023-02-21.
  72. ^ Pop, E.; Hilgen, S.; Adhityatama, S.; Berghuis, H.; Veldkamp, T.; Vonhof, H.; Sutisna, I.; Alink, G.; Noerwidi, S.; Roebroeks, W.; Joordens, J. (2023). "Reconstructing the provenance of the hominin fossils from Trinil (Java, Indonesia) through an integrated analysis of the historical and recent excavations". Journal of Human Evolution. 176. 103312. Bibcode:2023JHumE.17603312P. doi:10.1016/j.jhevol.2022.103312. hdl:1887/3674321. PMID 36745959. S2CID 256610380.
  73. ^ Berger, L. R.; Makhubela, T.; Molopyane, K.; Krüger, A.; Randolph-Quinney, P.; Elliott, M.; Peixotto, B.; Fuentes, A.; Tafforeau, P.; Beyrand, V.; Dollman, K.; Jinnah, Z.; Brewer Gillham, A.; Broad, K.; Brophy, J.; Chinamatira, G.; Dirks, P. H. M.; Feuerriegel, E.; Gurtov, A.; Hlophe, N.; Hunter, L.; Hunter, R.; Jakata, K.; Jaskolski, C.; Morris, H.; Pryor, E.; Ramaphela, M.; Roberts, E.; Smilg, J. S.; Tsikoane, M.; Tucker, S.; van Rooyen, D.; Warren, K.; Wren, C. D.; Kissel, M.; Spikins, P.; Hawks, J. (2023). "Evidence for deliberate burial of the dead by Homo naledi". eLife. doi:10.7554/eLife.89106.1.
  74. ^ Berger, L. R.; Hawks, J.; Fuentes, A.; van Rooyen, D.; Tsikoane, M.; Ramalepa, M.; Nkwe, S.; Molopyane, K. (2023). "241,000 to 335,000 Years Old Rock Engravings Made by Homo naledi in the Rising Star Cave system, South Africa". eLife. doi:10.7554/eLife.89102.1.
  75. ^ Fuentes, A.; Kissel, M.; Spikins, P.; Molopyane, K.; Hawks, J.; Berger, L. R. (2023). "Burials and engravings in a small-brained hominin, Homo naledi, from the late Pleistocene: contexts and evolutionary implications". eLife. doi:10.7554/eLife.89125.1.
  76. ^ Martinón-Torres, M.; Garate, D.; Herries, A. I. R.; Petraglia, M. D. (2023). "No scientific evidence that Homo naledi buried their dead and produced rock art". Journal of Human Evolution. 195. 103464. doi:10.1016/j.jhevol.2023.103464. PMID 37953122. S2CID 265148312.
  77. ^ Foecke, K. K.; Queffelec, A.; Pickering, R. (2024). "No Sedimentological Evidence for Deliberate Burial by Homo naledi - A Case Study Highlighting the Need for Best Practices in Geochemical Studies Within Archaeology and Paleoanthropology". PaleoAnthropology.
  78. ^ Rodríguez, J.; Hölzchen, E.; Caso-Alonso, A. I.; Berndt, J. O.; Hertler, C.; Timm, I. J.; Mateos, A. (2023). "Computer simulation of scavenging by hominins and giant hyenas in the late Early Pleistocene". Scientific Reports. 13 (1). 14283. Bibcode:2023NatSR..1314283R. doi:10.1038/s41598-023-39776-1. PMC 10539305. PMID 37770511.
  79. ^ Mateos, A.; Hölzchen, E.; Rodríguez, J. (2023). "Sabretooths, giant hyenas, and hominins: Shifts in the niche of scavengers in Iberia at the Epivillafranchian-Galerian transition". Palaeogeography, Palaeoclimatology, Palaeoecology. 111926. doi:10.1016/j.palaeo.2023.111926. S2CID 265390954.
  80. ^ Margari, V.; Hodell, D. A.; Parfitt, S. A.; Ashton, N. M.; Grimalt, J. O.; Kim, H.; Yun, K.-S.; Gibbard, P. L.; Stringer, C. B.; Timmermann, A.; Tzedakis, P. C. (2023). "Extreme glacial cooling likely led to hominin depopulation of Europe in the Early Pleistocene". Science. 381 (6658): 693–699. Bibcode:2023Sci...381..693M. doi:10.1126/science.adf4445. hdl:10261/334363. PMID 37561880. S2CID 260776366.
  81. ^ Hu, W.; Hao, Z.; Du, P.; Di Vincenzo, F.; Manzi, G.; Cui, J.; Fu, Y.-X.; Pan, Y.-H.; Li, H. (2023). "Genomic inference of a severe human bottleneck during the Early to Middle Pleistocene transition". Science. 381 (6661): 979–984. Bibcode:2023Sci...381..979H. doi:10.1126/science.abq7487. PMID 37651513. S2CID 261396309.
  82. ^ Barham, L.; Duller, G. A. T.; Candy, I.; Scott, C.; Cartwright, C. R.; Peterson, J. R.; Kabukcu, C.; Chapot, M. S.; Melia, E.; Rots, V.; George, N.; Taipale, N.; Gethin, P.; Nkombwe, P. (2023). "Evidence for the earliest structural use of wood at least 476,000 years ago". Nature. 622 (7981): 107–111. Bibcode:2023Natur.622..107B. doi:10.1038/s41586-023-06557-9. PMC 10550827. PMID 37730994.
  83. ^ Konidaris, G.; Tourloukis, V.; Boni, G.; Athanassiou, A.; Giusti, D.; Thompson, N.; Syrides, G.; Panagopoulou, E.; Karkanas, P.; Harvati, K. (2023). "Marathousa 2: A New Middle Pleistocene Locality in the Megalopolis Basin (Greece) With Evidence of Hominin Exploitation of Megafauna (Hippopotamus)". PaleoAnthropology. 2023 (1): 34–55. doi:10.48738/2023.iss1.810.
  84. ^ Gaudzinski-Windheuser, S.; Kindler, L.; Roebroeks, W. (2023). "Beaver exploitation, 400,000 years ago, testifies to prey choice diversity of Middle Pleistocene hominins". Scientific Reports. 13 (1). 19766. Bibcode:2023NatSR..1319766G. doi:10.1038/s41598-023-46956-6. PMC 10643649. PMID 37957223.
  85. ^ Wu, X.; Pei, S.; Cai, Y.; Tong, H.; Li, Q.; Dong, Z.; Sheng, J.; Jin, Z.; Ma, D.; Xing, S.; Li, X.; Cheng, X.; Cheng, H.; de la Torre, I.; Edwards, R. L.; Gong, X.; An, Z.; Trinkaus, E.; Liu, W. (2019). "Archaic human remains from Hualongdong, China, and Middle Pleistocene human continuity and variation". Proceedings of the National Academy of Sciences of the United States of America. 116 (20): 9820–9824. Bibcode:2019PNAS..116.9820W. doi:10.1073/pnas.1902396116. PMC 6525539. PMID 31036653.
  86. ^ Wu, X.; Pei, S.; Cai, Y.; Tong, H.; Zhang, Z.; Yan, Y.; Xing, S.; Martinón-Torres, M.; Bermúdez de Castro, J. M.; Liu, W. (2023). "Morphological and morphometric analyses of a late Middle Pleistocene hominin mandible from Hualongdong, China". Journal of Human Evolution. 182. 103411. Bibcode:2023JHumE.18203411W. doi:10.1016/j.jhevol.2023.103411. PMID 37531709. S2CID 260407114.
  87. ^ Milks, A.; Lehmann, J.; Leder, D.; Sietz, M.; Koddenberg, T.; Böhner, U.; Wachtendorf, V.; Terberger, T. (2023). "A double-pointed wooden throwing stick from Schöningen, Germany: Results and new insights from a multianalytical study". PLOS ONE. 18 (7). e0287719. Bibcode:2023PLoSO..1887719M. doi:10.1371/journal.pone.0287719. PMC 10355447. PMID 37467169.
  88. ^ Quam, R.; Martínez, I.; Rak, Y.; Hylander, B.; Pantoja, A.; Lorenzo, C.; Conde-Valverde, M.; Keeling, B.; Ortega Martínez, M. C.; Arsuaga, J. L. (2023). "The Neandertal nature of the Atapuerca Sima de los Huesos mandibles". The Anatomical Record. 307 (7): 2343–2393. doi:10.1002/ar.25190. PMID 36998196. S2CID 257857001.
  89. ^ Rodríguez, L.; García-González, R.; Arsuaga, J. L.; Carretero, J.-M. (2023). "Exploring the morphology of adult tibia and fibula from Sima de los Huesos site in sierra de Atapuerca, Burgos, Spain". The Anatomical Record. 307 (7): 2606–2634. doi:10.1002/ar.25336. hdl:10259/9328. PMID 37792425. S2CID 263621149.
  90. ^ Carretero, J.-M.; Rodríguez, L.; García-González, R.; Arsuaga, J. L. (2023). "Main morphological characteristics and sexual dimorphism of hominin adult femora from the Sima de los Huesos Middle Pleistocene site (Sierra de Atapuerca, Spain)". The Anatomical Record. 307 (7): 2575–2605. doi:10.1002/ar.25331. hdl:10259/9329. PMID 37794824. S2CID 263670556.
  91. ^ Brand, C. M.; Colbran, L. L.; Capra, J. A. (2023). "Resurrecting the alternative splicing landscape of archaic hominins using machine learning". Nature Ecology & Evolution. 7 (6): 939–953. Bibcode:2023NatEE...7..939B. doi:10.1038/s41559-023-02053-5. PMC 11440953. PMID 37142741. S2CID 251369748.
  92. ^ Ruan, J.; Timmermann, A.; Raia, P.; Yun, K.-S.; Zeller, E.; Mondanaro, A.; Di Febbraro, M.; Lemmon, D.; Castiglione, S.; Melchionna, M. (2023). "Climate shifts orchestrated hominin interbreeding events across Eurasia". Science. 381 (6658): 699–704. Bibcode:2023Sci...381..699R. doi:10.1126/science.add4459. hdl:2158/1344712. PMID 37561879. S2CID 260776383.
  93. ^ Peyrégne, S.; Slon, V.; Kelso, J. (2023). "More than a decade of genetic research on the Denisovans". Nature Reviews Genetics. 25 (2): 83–103. doi:10.1038/s41576-023-00643-4. PMID 37723347. S2CID 262055253.
  94. ^ Bacon, A.-M.; Bourgon, N.; Dufour, E.; Demeter, F.; Zanolli, C.; Westaway, K. E.; Joannes-Boyau, R.; Duringer, P.; Ponche, J.-L.; Morley, M. W.; Suzzoni, E.; Frangeul, S.; Boesch, Q.; Antoine, P.-O.; Boualaphane, S.; Sichanthongtip, P.; Sihanam, D.; Nguyen, T. M. H.; Nguyen, A. T.; Fiorillo, D.; Tombret, O.; Patole-Edoumba, E.; Zachwieja, A.; Luangkhoth, T.; Souksavatdy, V.; Dunn, T. E.; Shackelford, L.; Hublin, J.-J. (2023). "Palaeoenvironments and hominin evolutionary dynamics in southeast Asia". Scientific Reports. 13 (1). 16165. Bibcode:2023NatSR..1316165B. doi:10.1038/s41598-023-43011-2. PMC 10533506. PMID 37758744.
  95. ^ Sansalone, G.; Profico, A.; Wroe, S.; Allen, K.; Ledogar, J.; Ledogar, S.; Mitchell, D. R.; Mondanaro, A.; Melchionna, M.; Castiglione, S.; Serio, C.; Raia, P. (2023). "Homo sapiens and Neanderthals share high cerebral cortex integration into adulthood". Nature Ecology & Evolution. 7 (1): 42–50. Bibcode:2023NatEE...7...42S. doi:10.1038/s41559-022-01933-6. hdl:2158/1303264. PMID 36604552. S2CID 255464800.
  96. ^ Baquedano, E.; Arsuaga, J. L.; Pérez-González, A.; Laplana, C.; Márquez, B.; Huguet, R.; Gómez-Soler, S.; Villaescusa, L.; Galindo-Pellicena, M. Á.; Rodríguez, L.; García-González, R.; Ortega, M.-C.; Martín-Perea, D. M.; Ortega, A. I.; Hernández-Vivanco, L.; Ruiz-Liso, G.; Gómez-Hernanz, J.; Alonso-Martín, J. I.; Abrunhosa, A.; Moclán, A.; Casado, A. I.; Vegara-Riquelme, M.; Álvarez-Fernández, A.; Domínguez-García, Á. C.; Álvarez-Lao, D. J.; García, N.; Sevilla, P.; Blain, H.-A.; Ruiz-Zapata, B.; Gil-García, M. J.; Álvarez-Vena, A.; Sanz, T.; Quam, R.; Higham, T. (2023). "A symbolic Neanderthal accumulation of large herbivore crania". Nature Human Behaviour. 7 (3): 342–352. doi:10.1038/s41562-022-01503-7. PMC 10038806. PMID 36702939. S2CID 256304627.
  97. ^ Gaudzinski-Windheuser, S.; Kindler, L.; MacDonald, K.; Roebroeks, W. (2023). "Hunting and processing of straight-tusked elephants 125.000 years ago: Implications for Neanderthal behavior". Science Advances. 9 (5): eadd8186. Bibcode:2023SciA....9D8186G. doi:10.1126/sciadv.add8186. PMC 9891704. PMID 36724231.
  98. ^ Gaudzinski-Windheuser, S.; Kindler, L.; Roebroeks, W. (2023). "Widespread evidence for elephant exploitation by Last Interglacial Neanderthals on the North European plain". Proceedings of the National Academy of Sciences of the United States of America. 120 (50): e2309427120. Bibcode:2023PNAS..12009427G. doi:10.1073/pnas.2309427120. PMC 10723128. PMID 38048457.
  99. ^ Marquet, J.-C.; Freiesleben, T. H.; Thomsen, K. J.; Murray, A. S.; Calligaro, M.; Macaire, J.-J.; Robert, E.; Lorblanchet, M.; Aubry, T.; Bayle, G.; Bréhéret, J.-G.; Camus, H.; Chareille, P.; Egels, Y.; Guillaud, É.; Guérin, G.; Gautret, P.; Liard, M.; O'Farrell, M.; Peyrouse, J.-B.; Thamó-Bozsó, E.; Verdin, P.; Wojtczak, D.; Oberlin, C.; Jaubert, J. (2023). "The earliest unambiguous Neanderthal engravings on cave walls: La Roche-Cotard, Loire Valley, France". PLOS ONE. 18 (6). e0286568. Bibcode:2023PLoSO..1886568M. doi:10.1371/journal.pone.0286568. PMC 10284424. PMID 37343032.
  100. ^ Kozowyk, P. R. B.; Baron, L. I.; Langejans, G. H. J. (2023). "Identifying Palaeolithic birch tar production techniques: challenges from an experimental biomolecular approach". Scientific Reports. 13 (1). 14727. Bibcode:2023NatSR..1314727K. doi:10.1038/s41598-023-41898-5. PMC 10485052. PMID 37679507.
  101. ^ Kozowyk, P. R. B.; Fajardo, S.; Langejans, G. H. J. (2023). "Scaling Palaeolithic tar production processes exponentially increases behavioural complexity". Scientific Reports. 13 (1). 14709. Bibcode:2023NatSR..1314709K. doi:10.1038/s41598-023-41963-z. PMC 10485137. PMID 37679497.
  102. ^ Fajardo, S.; Kozowyk, P. R. B.; Langejans, G. H. J. (2023). "Measuring ancient technological complexity and its cognitive implications using Petri nets". Scientific Reports. 13 (1). 14961. arXiv:2305.09751. Bibcode:2023NatSR..1314961F. doi:10.1038/s41598-023-42078-1. PMC 10516984. PMID 37737280.
  103. ^ Morales, J. I.; Cebrià, A.; Soto, M.; Rodríguez-Hidalgo, A.; Hernando, R.; Moreno-Ribas, E.; Lombao, D.; Rabuñal, J. R.; Martín-Perea, D. M.; García-Tabernero, A.; Allué, E.; García-Basanta, A.; Lizano, E.; Marquès-Bonet, T.; Talamo, S.; Tassoni, L.; Lalueza-Fox, C.; Fullola, J. M.; Rosas, A. (2023). "A new assemblage of late Neanderthal remains from Cova Simanya (NE Iberia)". Frontiers in Earth Science. 11. 1230707. Bibcode:2023FrEaS..1130707M. doi:10.3389/feart.2023.1230707. hdl:10230/58416.
  104. ^ Russo, G.; Milks, A.; Leder, D.; Koddenberg, T.; Starkovich, B. M.; Duval, M.; Zhao, J.-X.; Darga, R.; Rosendahl, W.; Terberger, T. (2023). "First direct evidence of lion hunting and the early use of a lion pelt by Neanderthals". Scientific Reports. 13 (1). 16405. Bibcode:2023NatSR..1316405R. doi:10.1038/s41598-023-42764-0. PMC 10570355. PMID 37828055.
  105. ^ Abbas, M.; Lai, Z.; Jansen, J. D.; Tu, H.; Alqudah, M.; Xu, X.; Al-Saqarat, B. S.; Al Hseinat, M.; Ou, X.; Petraglia, M. D.; Carling, P. A. (2023). "Human dispersals out of Africa via the Levant". Science Advances. 9 (40). eadi6838. Bibcode:2023SciA....9I6838A. doi:10.1126/sciadv.adi6838. PMC 10550223. PMID 37792942.
  106. ^ Freidline, S. E.; Westaway, K. E.; Joannes-Boyau, R.; Duringer, P.; Ponche, J.-L.; Morley, M. W.; Hernandez, V. C.; McAllister-Hayward, M. S.; McColl, H.; Zanolli, C.; Gunz, P.; Bergmann, I.; Sichanthongtip, P.; Sihanam, D.; Boualaphane, S.; Luangkhoth, T.; Souksavatdy, V.; Dosseto, A.; Boesch, Q.; Patole-Edoumba, E.; Aubaile, F.; Crozier, F.; Suzzoni, E.; Frangeul, S.; Bourgon, N.; Zachwieja, A.; Dunn, T. E.; Bacon, A.-M.; Hublin, J.-J.; Shackelford, L.; Demeter, F. (2023). "Early presence of Homo sapiens in Southeast Asia by 86–68 kyr at Tam Pà Ling, Northern Laos". Nature Communications. 14 (1). 3193. Bibcode:2023NatCo..14.3193F. doi:10.1038/s41467-023-38715-y. PMC 10264382. PMID 37311788.
  107. ^ Bacon, B.; Khatiri, A.; Palmer, J.; Freeth, T.; Pettitt, P.; Kentridge, R. (2023). "An Upper Palaeolithic Proto-writing System and Phenological Calendar". Cambridge Archaeological Journal. 33 (3): 371–389. doi:10.1017/S0959774322000415. S2CID 255723053.
  108. ^ Harris, D. N.; Platt, A.; Hansen, M. E. B.; Fan, S.; McQuillan, M. A.; Nyambo, T.; Mpoloka, S. W.; Mokone, G. G.; Belay, G.; Fokunang, C.; Njamnshi, A. K.; Tishkoff, S. A. (2023). "Diverse African genomes reveal selection on ancient modern human introgressions in Neanderthals". Current Biology. 33 (22): 4905–4916.e5. doi:10.1016/j.cub.2023.09.066. PMC 10841429. PMID 37837965.
  109. ^ Quilodrán, C. S.; Rio, J.; Tsoupas, A.; Currat, M. (2023). "Past human expansions shaped the spatial pattern of Neanderthal ancestry". Science Advances. 9 (42). eadg9817. Bibcode:2023SciA....9G9817Q. doi:10.1126/sciadv.adg9817. PMC 10584333. PMID 37851812.
  110. ^ Gicqueau, A.; Schuh, A.; Henrion, J.; Viola, B.; Partiot, C.; Guillon, M.; Golovanova, L.; Doronichev, V.; Gunz, P.; Hublin, J.-J.; Maureille, B. (2023). "Anatomically modern human in the Châtelperronian hominin collection from the Grotte du Renne (Arcy-sur-Cure, Northeast France)". Scientific Reports. 13 (1). 12682. Bibcode:2023NatSR..1312682G. doi:10.1038/s41598-023-39767-2. PMC 10403518. PMID 37542146.
  111. ^ Vidal-Cordasco, M.; Terlato, G.; Ocio, D.; Marín-Arroyo, A. B. (2023). "Neanderthal coexistence with Homo sapiens in Europe was affected by herbivore carrying capacity". Science Advances. 9 (38). eadi4099. Bibcode:2023SciA....9I4099V. doi:10.1126/sciadv.adi4099. PMC 10516502. PMID 37738342.
  112. ^ Shichi, K.; Goebel, T.; Izuho, M.; Kashiwaya, K. (2023). "Climate amelioration, abrupt vegetation recovery, and the dispersal of Homo sapiens in Baikal Siberia". Science Advances. 9 (38). eadi0189. Bibcode:2023SciA....9I.189S. doi:10.1126/sciadv.adi0189. PMC 10516500. PMID 37738346.
  113. ^ Rigaud, S.; Rybin, E. P.; Khatsenovich, A. M.; Queffelec, A.; Paine, C. H.; Gunchinsuren, B.; Talamo, S.; Marchenko, D. V.; Bolorbat, T.; Odsuren, D.; Gillam, J. C.; Izuho, M.; Fedorchenko, A. Yu.; Odgerel, D.; Shelepaev, R.; Hublin, J.-J.; Zwyns, N. (2023). "Symbolic innovation at the onset of the Upper Paleolithic in Eurasia shown by the personal ornaments from Tolbor-21 (Mongolia)". Scientific Reports. 13 (1). 9545. Bibcode:2023NatSR..13.9545R. doi:10.1038/s41598-023-36140-1. PMC 10261033. PMID 37308668.
  114. ^ Bennett, E. A.; Parasayan, O.; Prat, S.; Péan, S.; Crépin, L.; Yanevich, A.; Grange, T.; Geigl, E.-M. (2023). "Genome sequences of 36,000- to 37,000-year-old modern humans at Buran-Kaya III in Crimea" (PDF). Nature Ecology & Evolution. 7 (12): 2160–2172. Bibcode:2023NatEE...7.2160B. doi:10.1038/s41559-023-02211-9. PMID 37872416. S2CID 264438325.
  115. ^ d'Errico, F.; David, S.; Coqueugniot, H.; Meister, C.; Dutkiewicz, E.; Pigeaud, R.; Sitzia, L.; Cailhol, D.; Bosq, M.; Griggo, C.; Affolter, J.; Queffelec, A.; Doyon, L. (2023). "A 36,200-year-old carving from Grotte des Gorges, Amange, Jura, France". Scientific Reports. 13 (1). 12895. Bibcode:2023NatSR..1312895D. doi:10.1038/s41598-023-39897-7. PMC 10412625. PMID 37558802.
  116. ^ a b Posth, C.; Yu, H.; Ghalichi, A.; Rougier, H.; et al. (2023). "Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers". Nature. 615 (7950): 117–126. Bibcode:2023Natur.615..117P. doi:10.1038/s41586-023-05726-0. PMC 9977688. PMID 36859578. This article incorporates text from this source, which is available under the CC BY 4.0 license.
  117. ^ Coppe, J.; Taipale, N.; Rots, V. (2023). "Terminal ballistic analysis of impact fractures reveals the use of spearthrower 31 ky ago at Maisières-Canal, Belgium". Scientific Reports. 13 (1). 18305. Bibcode:2023NatSR..1318305C. doi:10.1038/s41598-023-45554-w. PMC 10600151. PMID 37880379.
  118. ^ Villalba-Mouco, V.; van de Loosdrecht, M. S.; Rohrlach, A. B.; Fewlass, H.; Talamo, S.; Yu, H.; Aron, F.; Lalueza-Fox, C.; Cabello, L.; Cantalejo Duarte, P.; Ramos-Muñoz, J.; Posth, C.; Krause, J.; Weniger, G.-C.; Haak, W. (2023). "A 23,000-year-old southern Iberian individual links human groups that lived in Western Europe before and after the Last Glacial Maximum". Nature Ecology & Evolution. 7 (4): 597–609. Bibcode:2023NatEE...7..597V. doi:10.1038/s41559-023-01987-0. PMC 10089921. PMID 36859553. S2CID 257282497.
  119. ^ Bennett, M. R.; Bustos, D.; Pigati, J. S.; Springer, K. B.; Urban, T. M.; Holliday, V. T.; Reynolds, S. C.; Budka, M.; Honke, J. S.; Hudson, A. M.; Fenerty, B.; Connelly, C.; Martinez, P. J.; Santucci, V. L.; Odess, D. (2021). "Evidence of humans in North America during the Last Glacial Maximum" (PDF). Science. 373 (6562): 1528–1531. Bibcode:2021Sci...373.1528B. doi:10.1126/science.abg7586. PMID 34554787. S2CID 237616125.
  120. ^ Pigati, J. S.; Springer, K. B.; Honke, J. S.; Wahl, D.; Champagne, M. R.; Zimmerman, S. R. H.; Gray, H. J.; Santucci, V. L.; Odess, D.; Bustos, D.; Bennett, M. R. (2023). "Independent age estimates resolve the controversy of ancient human footprints at White Sands" (PDF). Science. 382 (6666): 73–75. Bibcode:2023Sci...382...73P. doi:10.1126/science.adh5007. PMID 37797035. S2CID 263672291.
  121. ^ Moore, C. R.; Kimball, L. R.; Goodyear, A. C.; Brooks, M. J.; Daniel, I. R.; West, A.; Taylor, S. G.; Weber, K. J.; Fagan, J. L.; Walker, C. M. (2023). "Paleoamerican exploitation of extinct megafauna revealed through immunological blood residue and microwear analysis, North and South Carolina, USA". Scientific Reports. 13 (1). 9464. Bibcode:2023NatSR..13.9464M. doi:10.1038/s41598-023-36617-z. PMC 10257692. PMID 37301945.
  122. ^ Mika, A.; Lierenz, J.; Smith, A.; Buchanan, B.; Walker, R. S.; Eren, M. I.; Bebber, M. R.; Key, A. (2023). "Hafted technologies likely reduced stone tool-related selective pressures acting on the hominin hand". Scientific Reports. 13 (1). 15582. Bibcode:2023NatSR..1315582M. doi:10.1038/s41598-023-42096-z. PMC 10511494. PMID 37730739.
  123. ^ Pansani, T. R.; Pobiner, B.; Gueriau, P.; Thoury, M.; Tafforeau, P.; Baranger, E.; Vialou, Á. V.; Vialou, D.; McSparron, C.; de Castro, M. C.; Dantas, M. A. T.; Bertrand, L.; Pacheco, M. L. A. F. (2023). "Evidence of artefacts made of giant sloth bones in central Brazil around the last glacial maximum". Proceedings of the Royal Society B: Biological Sciences. 290 (2002). 20230316. doi:10.1098/rspb.2023.0316. PMC 10336383. PMID 37434527.
  124. ^ Davin, L.; Bellot-Gurlet, L.; Navas, J. (2023). "Plant-based red colouration of shell beads 15,000 years ago in Kebara Cave, Mount Carmel (Israel)". PLOS ONE. 18 (10). e0292264. Bibcode:2023PLoSO..1892264D. doi:10.1371/journal.pone.0292264. PMC 10599507. PMID 37878593.
  125. ^ Garate, D.; Rivero, O.; Rios-Garaizar, J.; Medina-Alcaide, M. Á.; Arriolabengoa, M.; Intxaurbe, I.; Ruiz-López, J. F.; Marín-Arroyo, A. B.; Rofes, J.; García Bustos, P.; Torres, A.; Salazar, S. (2023). "Unravelling the skills and motivations of Magdalenian artists in the depths of Atxurra Cave (Northern Spain)". Scientific Reports. 13 (1). 17340. Bibcode:2023NatSR..1317340G. doi:10.1038/s41598-023-44520-w. PMC 10575969. PMID 37833336.
  126. ^ Mattila, T. M.; Svensson, E. M.; Juras, A.; Günther, T.; Kashuba, N.; Ala-Hulkko, T.; Chyleński, M.; McKenna, J.; Pospieszny, Ł.; Constantinescu, M.; Rotea, M.; Palincaș, N.; Wilk, S.; Czerniak, L.; Kruk, J.; Łapo, J.; Makarowicz, P.; Potekhina, I.; Soficaru, A.; Szmyt, M.; Szostek, K.; Götherström, A.; Storå, J.; Netea, M. G.; Nikitin, A. G.; Persson, P.; Malmström, H.; Jakobsson, M. (2023). "Genetic continuity, isolation, and gene flow in Stone Age Central and Eastern Europe". Communications Biology. 6 (1). 793. doi:10.1038/s42003-023-05131-3. PMC 10412644. PMID 37558731.
  127. ^ Wang, K.; Prüfer, K.; Krause-Kyora, B.; Childebayeva, A.; Schuenemann, V. J.; Coia, V.; Maixner, F.; Zink, A.; Schiffels, S.; Krause, J. (2023). "High-coverage genome of the Tyrolean Iceman reveals unusually high Anatolian farmer ancestry". Cell Genomics. 3 (9). 100377. doi:10.1016/j.xgen.2023.100377. PMC 10504632. PMID 37719142. S2CID 261001242.
  128. ^ Lenssen-Erz, T.; Pastoors, A.; Uthmeier, T.; Ciqae, T.; Kxunta, /U.; Thao, T. (2023). "Animal tracks and human footprints in prehistoric hunter-gatherer rock art of the Doro! nawas mountains (Namibia), analysed by present-day indigenous tracking experts". PLOS ONE. 18 (9). e0289560. Bibcode:2023PLoSO..1889560L. doi:10.1371/journal.pone.0289560. PMC 10499263. PMID 37703266.
  129. ^ Barreiro, Luis B.; Quintana-Murci, Lluís (January 2010). "From evolutionary genetics to human immunology: how selection shapes host defence genes". Nature Reviews Genetics. 11 (1): 17–30. doi:10.1038/nrg2698. ISSN 1471-0064. PMID 19953080. S2CID 15705508.
  130. ^ Kerner, Gaspard; Neehus, Anna-Lena; Philippot, Quentin; Bohlen, Jonathan; Rinchai, Darawan; Kerrouche, Nacim; Puel, Anne; Zhang, Shen-Ying; Boisson-Dupuis, Stéphanie; Abel, Laurent; Casanova, Jean-Laurent; Patin, Etienne; Laval, Guillaume; Quintana-Murci, Lluis (8 February 2023). "Genetic adaptation to pathogens and increased risk of inflammatory disorders in post-Neolithic Europe". Cell Genomics. 3 (2): 100248. doi:10.1016/j.xgen.2022.100248. ISSN 2666-979X. PMC 9932995. PMID 36819665. S2CID 250341156.
  131. ^ Metz, Laure; Lewis, Jason E.; Slimak, Ludovic (24 February 2023). "Bow-and-arrow, technology of the first modern humans in Europe 54,000 years ago at Mandrin, France". Science Advances. 9 (8): eadd4675. Bibcode:2023SciA....9D4675M. doi:10.1126/sciadv.add4675. PMC 9946345. PMID 36812314.
  132. ^ a b Schwartz, Ernst; Nenning, Karl-Heinz; Heuer, Katja; Jeffery, Nathan; Bertrand, Ornella C.; Toro, Roberto; Kasprian, Gregor; Prayer, Daniela; Langs, Georg (20 April 2023). "Evolution of cortical geometry and its link to function, behaviour and ecology". Nature Communications. 14 (1): 2252. Bibcode:2023NatCo..14.2252S. doi:10.1038/s41467-023-37574-x. ISSN 2041-1723. PMC 10119184. PMID 37080952.
  133. ^ a b Ragsdale, Aaron P.; Weaver, Timothy D.; Atkinson, Elizabeth G.; Hoal, Eileen G.; Möller, Marlo; Henn, Brenna M. (17 May 2023). "A weakly structured stem for human origins in Africa". Nature. 167 (7962): 755–763. Bibcode:2023Natur.617..755R. doi:10.1038/s41586-023-06055-y. PMC 10208968. PMID 37198480.
  134. ^ Zimmer, Carl (17 May 2023). "Study Offers New Twist in How the First Humans Evolved - A new genetic analysis of 290 people suggests that humans emerged at various times and places in Africa". The New York Times. Archived from the original on 17 May 2023. Retrieved 18 May 2023.
  135. ^ Heggarty, Paul; Anderson, Cormac; Scarborough, Matthew; King, Benedict; et al. (28 July 2023). "Language trees with sampled ancestors support a hybrid model for the origin of Indo-European languages". Science. 381 (6656): eabg0818. doi:10.1126/science.abg0818. hdl:10234/204329. ISSN 0036-8075. PMID 37499002. S2CID 260202659.
  136. ^ Ben-Dor, Miki; Barkai, Ran (September 2023). "The Evolution of Paleolithic Hunting Weapons: A Response to Declining Prey Size". Quaternary. 6 (3): 46. doi:10.3390/quat6030046. ISSN 2571-550X.
  137. ^ "World's oldest wooden structure found in Zambia – DW – 09/20/2023". dw.com. Retrieved 2023-09-20.
  138. ^ Barham, L.; Duller, G. a. T.; Candy, I.; Scott, C.; Cartwright, C. R.; Peterson, J. R.; Kabukcu, C.; Chapot, M. S.; Melia, F.; Rots, V.; George, N.; Taipale, N.; Gethin, P.; Nkombwe, P. (October 2023). "Evidence for the earliest structural use of wood at least 476,000 years ago". Nature. 622 (7981): 107–111. Bibcode:2023Natur.622..107B. doi:10.1038/s41586-023-06557-9. ISSN 1476-4687. PMC 10550827. PMID 37730994.
  139. ^ May, S. R.; Brown, M. A. (2023). "Anchitheriomys buceei (Rodentia, Castoridae) from the Miocene of Texas and a review of the Miocene beavers from the Texas Coastal Plain, USA". Palaeontologia Electronica. 26 (1). 26.1.a7. doi:10.26879/1236.
  140. ^ Samuels, J. X.; Calede, J. J.-M.; Hunt, R. M. (2023). "The earliest dipodomyine heteromyid in North America and the phylogenetic relationships of geomorph rodents". PeerJ. 11. e14693. doi:10.7717/peerj.14693. PMC 10007967. PMID 36915658.
  141. ^ a b McGrath, A. J.; Flynn, J. J.; Croft, D. A.; Chick, J.; Dodson, H. E.; Wyss, A. R. (2023). "Caviomorphs (Rodentia, Hystricognathi) from Pampa Castillo, Chile: new octodontoid records and biochronological implications". Papers in Palaeontology. 9 (1). e1477. Bibcode:2023PPal....9E1477M. doi:10.1002/spp2.1477. S2CID 256648305.
  142. ^ Martin, R. A.; Kelly, T. S.; Holroyd, P. (2023). "Two Asian cricetodontine-like muroid rodents from the Neogene of western North America". Journal of Paleontology. 97 (3): 735–753. Bibcode:2023JPal...97..735M. doi:10.1017/jpa.2023.10. S2CID 258141222.
  143. ^ Martin, R. A.; Zakrzewski, R. J. (2023). "An unusual Pliocene arvicoline-like cricetid rodent from Ellesmere Island in the Canadian Arctic". Journal of Vertebrate Paleontology. 42 (3). e2167605. doi:10.1080/02724634.2023.2167605. S2CID 257188815.
  144. ^ a b Li, Q.; Ni, X.; Stidham, T. A.; Qin, C.; Gong, H.; Zhang, L. (2023). "Two large squirrels (Rodentia, Mammalia) from the Junggar Basin of northwestern China demonstrate early radiation among squirrels and suggest forested paleoenvironment in the late Eocene of Central Asia". Frontiers in Earth Science. 10. 1004509. Bibcode:2023FrEaS..1004509L. doi:10.3389/feart.2022.1004509.
  145. ^ a b c Bell, S. D.; Meyer, T.; Storer, J. E. (2023). "New species of Sciurion and Hesperopetes (Mammalia, Rodentia, Sciuridae) from Oligocene faunas of the Cypress Hills Formation, Saskatchewan". Paludicola. 14 (3): 87–94.
  146. ^ Halaçlar, K.; Sevim Erol, A.; Köroğlu, T.; Rummy, P.; Deng, T.; Mayda, S. (2023). "A new Late Miocene Hystrix (Hystricidae, Rodentia) from Turkey". Integrative Zoology. 19 (3): 548–563. doi:10.1111/1749-4877.12754. PMID 37532680. S2CID 260432917.
  147. ^ Czernielewski, M. (2022). "A new species of Hystrix (Rodentia: Hystricidae) from the Pliocene site of Węże 1 in southern Poland". Acta Geologica Polonica. 73 (1): 73–83. doi:10.24425/agp.2022.142649. S2CID 260019772. Archived from the original on 2023-03-04. Retrieved 2023-02-09.
  148. ^ Xu, R.; Zhang, Z.; Li, Q.; Wang, B. (2023). "New Material of Karakoromys (Ctenodactylidae, Rodentia) from Late Eocene–Early Oligocene of Ulantatal (Nei Mongol): Taxonomy, Diversity, and Response to Climatic Change". Diversity. 15 (6). 744. doi:10.3390/d15060744.
  149. ^ Kelly, T. S.; Martin, R. A. (2023). "First record of the archaic Eurasian cricetid rodent Microtodon from North America". Historical Biology: An International Journal of Paleobiology: 1–12. doi:10.1080/08912963.2023.2266843. S2CID 265124460.
  150. ^ Flynn, L. J.; Li, Q.; Kelley, J.; Jablonski, N. G.; Ji, X.-P.; Su, D. F.; Wang, X.-M. (2023). "A giant bamboo rat from the latest Miocene of Yunnan". Vertebrata PalAsiatica. 61 (4): 277–283. doi:10.19615/j.cnki.2096-9899.230710.
  151. ^ Flynn, L. J.; Kimura, Y. (2023). "One more Siwalik surprise: the oldest record of Mus (Mammalia, Rodentia) from the late Miocene of northern Pakistan". In Yuong-Nam Lee (ed.). Windows into sauropsid and synapsid evolution. Essays in honor of Louis L. Jacobs. Dinosaur Science Center Press. pp. 264–272. ISBN 978-89-5708-358-1.
  152. ^ a b c Golovanov, S. E.; Zazhigin, V. S. (2023). "Characterization of the West Siberian lineage of zokors (Mammalia, Rodentia, Spalacidae, Myospalacinae) and divergence in molar development". Journal of Paleontology. 97 (5): 1133–1146. Bibcode:2023JPal...97.1133G. doi:10.1017/jpa.2023.61. S2CID 265684909.
  153. ^ Vakil, V.; Cramb, J.; Price, G. J.; Webb, G. E.; Louys, J. (2023). "Conservation implications of a new fossil species of hopping-mouse, Notomys magnus sp. nov. (Rodentia: Muridae), from the Broken River Region, northeastern Queensland". Alcheringa: An Australasian Journal of Palaeontology. 47 (4): 590–601. Bibcode:2023Alch...47..590V. doi:10.1080/03115518.2023.2210192. hdl:10072/425086. S2CID 259812555.
  154. ^ Verzi, D. H.; Olivares, A. I.; De Santi, N. A.; Morgan, C. C.; López, J. M.; Chiavazza, H. (2023). "A new extinct desert rodent from the Holocene of South America and its bearing on the diversity of Octodontidae (Hystricognathi)". Journal of Mammalogy. 105 (1): 59–72. doi:10.1093/jmammal/gyad106.
  155. ^ a b Candela, A. M.; Abello, M. A.; Reguero, M. A.; García Esponda, C. M.; Pardiñas, U. F. J.; Zurita, A. A.; Pujos, F.; Miño-Boilini, Á.; Quiñones, S.; Galli, C. I.; Luna, C.; Voglino, D.; De Los Reyes, M.; Cuaranta, P. (2023). "The Late Miocene mammals from the Humahuaca Basin (northwestern Argentina) provide new evidence on the initial stages of the Great American Biotic Interchange". Papers in Palaeontology. 9 (5). e1527. Bibcode:2023PPal....9E1527C. doi:10.1002/spp2.1527. S2CID 263822348.
  156. ^ Martin, R. A.; Fox, N. S. (2023). "A new Early Pleistocene North American prairie vole from the Java local fauna of South Dakota, USA". Historical Biology: An International Journal of Paleobiology: 1–14. doi:10.1080/08912963.2023.2261955. S2CID 264119649.
  157. ^ a b Oliver, A.; Carro-Rodríguez, P. M.; López-Guerrero, P.; Daxner-Höck, G. (2023). "A new framework of the evolution of the ctenodactylids (Mammalia: Rodentia) in Asia: new species and phylogenetic status of distylomyins". Zoological Journal of the Linnean Society. 199 (3): 633–655. doi:10.1093/zoolinnean/zlad030.
  158. ^ Meyer, T.; Storer, J. E.; Gilbert, M. M. (2023). "Fossil Bush locality (late Orellan: early Oligocene), Cypress Hills Formation, southwestern Saskatchewan: geology and rodents Pelycomys and Aplodontidae". Paludicola. 14 (3): 130–140.
  159. ^ Chang, M.; Zhang, C.; Ji, X.; Li, Q.; Ni, X. (2023). "A new Rattus species and its associated micromammals from the Pliocene Yangyi Formation in Baoshan, western Yunnan, China". Journal of Vertebrate Paleontology. 43 (1). e2249063. doi:10.1080/02724634.2023.2249063. S2CID 265506957.
  160. ^ a b Flynn, L. J.; Wu, W.; Li, L.; Qiu, Z. (2023). "New material of Sayimys (Rodentia, Ctenodactylidae) from China". In Yuong-Nam Lee (ed.). Windows into sauropsid and synapsid evolution. Essays in honor of Louis L. Jacobs. Dinosaur Science Center Press. pp. 273–289. ISBN 978-89-5708-358-1.
  161. ^ a b Ni, X.; Li, Q.; Deng, T.; Zhang, L.; Gong, H.; Qin, C.; Shi, J.; Shi, F.; Fu, S. (2023). "New Yuomys rodents from southeastern Qinghai-Tibet Plateau indicate low elevation during the Middle Eocene". Frontiers in Earth Science. 10. 1018675. Bibcode:2023FrEaS..1018675N. doi:10.3389/feart.2022.1018675.
  162. ^ van de Weerd, A. A.; de Bruijn, H.; Wessels, W. (2023). "A small assemblage of early Oligocene rodents and insectivores from the Sivas basin, Turkey". Palaeobiodiversity and Palaeoenvironments. 103 (3): 609–632. Bibcode:2023PdPe..103..609V. doi:10.1007/s12549-022-00563-x. S2CID 256714651.
  163. ^ Crespo, V. D.; Ríos, M.; Marquina-Blasco, R.; Montoya, P. (2023). "They are all over the place! The exceptional high biodiversity of dormice in the Early Miocene of the Ribesalbes-Alcora Basin (Spain)". Geodiversitas. 45 (20): 589–641. doi:10.5252/geodiversitas2023v45a20. S2CID 265227947.
  164. ^ Menéndez, I.; Zelditch, M. L.; Tejero-Cicuéndez, H.; Swiderski, D. L.; Carro-Rodríguez, P. M.; Hernández Fernández, M.; Álvarez-Sierra, M. Á.; Gómez Cano, A. R. (2023). "Dietary adaptations and tooth morphology in squirrels: Insights from extant and extinct species". Palaeogeography, Palaeoclimatology, Palaeoecology. 629. 111788. Bibcode:2023PPP...62911788M. doi:10.1016/j.palaeo.2023.111788. hdl:10261/349458. S2CID 261307723.
  165. ^ Sinitsa, M. V.; Tleuberdina, P. A.; Pita, O. M. (2023). "Squirrels (Rodentia, Sciuridae) from the Late Miocene Pavlodar fossil site in northern Kazakhstan: implications for cranial anatomy and evolutionary history of the early marmotine ground squirrel genus Sinotamias". Historical Biology: An International Journal of Paleobiology: 1–13. doi:10.1080/08912963.2023.2278159. S2CID 265169407.
  166. ^ Sinitsa, M.; Tesakov, A. (2023). "Squirrels (Rodentia, Sciuridae) of the Early Miocene Tagay fauna in Eastern Siberia". Biological Communications. 68 (4): 273–290. doi:10.21638/spbu03.2023.407.
  167. ^ Bento Da Costa, L.; Bardin, J.; Senut, B. (2023). "Locomotor adaptations in the Early Miocene species Diamantomys luederitzi (Rodentia, Mammalia) from Uganda (Napak)". Journal of Morphology. 284 (3): e21560. doi:10.1002/jmor.21560. PMID 36715561. S2CID 256387920.
  168. ^ Arnaudo, M. E.; Arnal, M. (2023). "First virtual endocast description of an early Miocene representative of Pan-Octodontoidea (Caviomorpha, Hystricognathi) and considerations on the early encephalic evolution in South American rodents". Journal of Paleontology. 97 (2): 454–476. Bibcode:2023JPal...97..454A. doi:10.1017/jpa.2022.98. S2CID 256216328.
  169. ^ Cardonatto, M. C.; Feola, S.; Melchor, R. N. (2023). "Neogene communal rodent burrow systems from central Argentina". Historical Biology: An International Journal of Paleobiology. 36 (9): 1697–1711. doi:10.1080/08912963.2023.2228319. S2CID 259616149.
  170. ^ Lechner, T.; Böhme, M. (2023). "The largest record of the minute beaver Euroxenomys minutus (Mammalia, Castoridae) from the early Late Miocene hominid locality Hammerschmiede (Bavaria, Southern Germany) and palaeoecological considerations". Historical Biology: An International Journal of Paleobiology. 36 (7): 1415–1430. doi:10.1080/08912963.2023.2215236. S2CID 259680420.
  171. ^ Lubbers, K. E.; Samuels, J. X. (2023). "Comparison of Miocene to early Pleistocene-aged Castor californicus (Rodentia: Castoridae) to extant beavers and implications for the evolution of Castor in North America". Palaeontologia Electronica. 26 (3). 26.3.a35. doi:10.26879/1284.
  172. ^ Skandalos, P.; van den Hoek Ostende, L. W. (2023). "Wear-dependent molar morphology in hypsodont rodents: The case of the spalacine Pliospalax". Palaeontologia Electronica. 26 (3). 26.3.a47. doi:10.26879/1322.
  173. ^ Patnaik, R.; Flynn, L. J.; Kumar, R.; Singh, B.; Krishan, K. (2023). "New rhizomyine rodent specimens from the late Pliocene (upper Siwaliks) of India: phylogenetic implications". In Yuong-Nam Lee (ed.). Windows into sauropsid and synapsid evolution. Essays in honor of Louis L. Jacobs. Dinosaur Science Center Press. pp. 290–305. ISBN 978-89-5708-358-1.
  174. ^ Xie, K.; Zhang, Y.; Li, Y. (2023). "Large-sized fossil hamsters from the late Middle Pleistocene Locality 2 of Shanyangzhai, China, and discussion on the validity of Cricetinus and C. varians (Rodentia: Cricetidae)". PeerJ. 11. e15604. doi:10.7717/peerj.15604. PMC 10389077. PMID 37529209.
  175. ^ Ronez, C.; Carrillo-Briceño, J. D.; Hadler, P.; Sánchez-Villagra, M. R.; Pardiñas, U. F. J. (2023). "Pliocene sigmodontine rodents (Mammalia: Cricetidae) in northernmost South America: test of biogeographic hypotheses and revised evolutionary scenarios". Royal Society Open Science. 10 (8). 221417. Bibcode:2023RSOS...1021417R. doi:10.1098/rsos.221417. PMC 10394426. PMID 37538748.
  176. ^ Sehgal, R. K.; Singh, A. P.; Singh, N. P.; Gilbert, C. C.; Patel, B. A.; Patnaik, R. (2023). "First report of rodents from the Miocene Siwalik locality of Dunera, Pathankot District, Punjab, India". Palaeontologia Electronica. 26 (3). 26.3.a49. doi:10.26879/1308.
  177. ^ Winkler, A. J. (2023). "Late Miocene and early Pliocene rodents from the Tugen Hills, western Kenya". In Yuong-Nam Lee (ed.). Windows into sauropsid and synapsid evolution. Essays in honor of Louis L. Jacobs. Dinosaur Science Center Press. pp. 306–331. ISBN 978-89-5708-358-1.
  178. ^ a b c Sen, S.; Geraads, D. (2023). "Lagomorpha (Mammalia) from the Pliocene-Pleistocene locality of Ahl al Oughlam, Morocco". Palaeobiodiversity and Palaeoenvironments. 103 (3): 633–661. Bibcode:2023PdPe..103..633S. doi:10.1007/s12549-022-00569-5. S2CID 256583662.
  179. ^ a b Scott, C. S.; López-Torres, S.; Silcox, M. T.; Fox, R. C. (2023). "New paromomyids (Mammalia, Primates) from the Paleocene of southwestern Alberta, Canada, and an analysis of paromomyid interrelationships". Journal of Paleontology. 97 (2): 477–498. Bibcode:2023JPal...97..477S. doi:10.1017/jpa.2022.103. S2CID 256183978.
  180. ^ a b Miller, K.; Tietjen, K.; Beard, K. C. (2023). "Basal Primatomorpha colonized Ellesmere Island (Arctic Canada) during the hyperthermal conditions of the early Eocene climatic optimum". PLOS ONE. 18 (1). e0280114. Bibcode:2023PLoSO..1880114M. doi:10.1371/journal.pone.0280114. PMC 9876366. PMID 36696373.
  181. ^ Tomida, Y.; Takahashi, K. (2023). "A new species of Pliopentalagus (Lagomorpha, Mammalia) from the Pliocene Kobiwako Group, central Japan". In Yuong-Nam Lee (ed.). Windows into sauropsid and synapsid evolution. Essays in honor of Louis L. Jacobs. Dinosaur Science Center Press. pp. 332–340. ISBN 978-89-5708-358-1.
  182. ^ López-Torres, S.; Bertrand, O. C.; Lang, M. M.; Fostowicz-Frelik, Ł.; Silcox, M. T.; Meng, J. (2023). "Cranial endocast of Anagale gobiensis (Anagalidae) and its implications for early brain evolution in Euarchontoglires". Palaeontology. 66 (3). e12650. Bibcode:2023Palgy..6612650L. doi:10.1111/pala.12650. S2CID 259031941.
  183. ^ Fostowicz-Frelik, Ł.; Cox, P. G.; Li, Q. (2023). "Mandibular characteristics of early Glires (Mammalia) reveal mixed rodent and lagomorph morphotypes". Philosophical Transactions of the Royal Society B: Biological Sciences. 378 (1880). 20220087. doi:10.1098/rstb.2022.0087. PMC 10184241. PMID 37183896.
  184. ^ Utzeri, V. J.; Cilli, E.; Fontani, F.; Zoboli, D.; Orsini, M.; Ribani, A.; Latorre, A.; Lissovsky, A. A.; Pillola, G. L.; Bovo, S.; Gruppioni, G.; Luiselli, D.; Fontanesi, L. (2023). "Ancient DNA re-opens the question of the phylogenetic position of the Sardinian pika Prolagus sardus (Wagner, 1829), an extinct lagomorph". Scientific Reports. 13 (1). 13635. Bibcode:2023NatSR..1313635U. doi:10.1038/s41598-023-40746-w. PMC 10442435. PMID 37604894.
  185. ^ Fernández-Bejarano, E.; Blanco, A.; Angelone, C.; Zhang, Z.; Moncunill-Solé, B. (2023). "Bone histology of the Late Pleistocene Prolagus sardus (Lagomorpha: Mammalia) provides further insights into life-history strategy of insular giant small mammals". Zoological Journal of the Linnean Society. 201: 169–183. doi:10.1093/zoolinnean/zlad112.
  186. ^ López-Torres, S.; Bhagat, R.; Bertrand, O. C.; Silcox, M. T.; Fostowicz-Frelik, Ł. (2023). "Locomotor behavior and hearing sensitivity in an early lagomorph reconstructed from the bony labyrinth". Ecology and Evolution. 13 (3). e9890. Bibcode:2023EcoEv..13E9890L. doi:10.1002/ece3.9890. PMC 10024310. PMID 36942029.
  187. ^ Köhler, M.; Nacarino-Meneses, C.; Quintana Cardona, J.; Arnold, W.; Stalder, G.; Suchentrunk, F.; Moyà-Solà, S. (2023). "Insular giant leporid matured later than predicted by scaling". iScience. 26 (9). 107654. Bibcode:2023iSci...26j7654K. doi:10.1016/j.isci.2023.107654. PMC 10485033. PMID 37694152. S2CID 260990184.
  188. ^ Boeskorov, G. G.; Chernova, O. F.; Shchelchkova, M. V. (2023). "First Find of a Frozen Mummy of the Fossil Don Hare Lepus tanaiticus (Leporidae, Lagomorpha) from the Pleistocene of Yakutia". Doklady Earth Sciences. 510 (1): 298–302. Bibcode:2023DokES.510..298B. doi:10.1134/S1028334X23600056. S2CID 258478095.
  189. ^ Rabiniak, E.; Rekovets, L.; Kovalchuk, O.; Baca, M.; Popović, D.; Strzała, T.; Barkaszi, Z. (2023). "Hares from the Late Pleistocene of Ukraine: a phylogenetic analysis and the status of Lepus tanaiticus (Mammalia, Lagomorpha)". Biologia. 79 (1): 87–99. Bibcode:2023Biolg..79...87R. doi:10.1007/s11756-023-01499-z. S2CID 260995182.
  190. ^ White, C. L.; Bloch, J. I.; Morse, P. E.; Silcox, M. T. (2023). "Virtual endocast of late Paleocene Niptomomys (Microsyopidae, Euarchonta) and early primate brain evolution". Journal of Human Evolution. 175. 103303. Bibcode:2023JHumE.17503303W. doi:10.1016/j.jhevol.2022.103303. PMID 36608392. S2CID 255501297.
  191. ^ Maiolino, S. A.; Chester, S. G. B.; Boyer, D. M.; Bloch, J. I. (2023). "Functional morphology of plesiadapiform distal phalanges and implications for the evolution of arboreality in Paleogene euarchontans". Journal of Mammalian Evolution. 30 (4): 1107–1153. doi:10.1007/s10914-023-09677-1. S2CID 261037214.
  192. ^ a b c d e f g h i j k Godfrey, S. J.; Lambert, O. (2023). "Miocene Toothed Whales (Odontoceti) from Calvert Cliffs, Atlantic Coastal Plain, USA". Smithsonian Contributions to Paleobiology. 107: 49–186. doi:10.5479/si.23847438. S2CID 260911542.
  193. ^ Bisconti, M.; Chicchi, S.; Monegatti, P.; Scacchetti, M.; Campanini, R.; Marsili, S.; Carnevale, G. (2023). "Taphonomy, osteology and functional morphology of a partially articulated skeleton of an archaic Pliocene right whale from Emilia Romagna (NW Italy)". Bollettino della Società Paleontologica Italiana. 62 (3): 231–262. doi:10.4435/BSPI.2023.09 (inactive 2024-11-20).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  194. ^ a b Boessenecker, R. W.; Beatty, B. L.; Geisler, J. H. (2023). "New specimens and species of the Oligocene toothed baleen whale Coronodon from South Carolina and the origin of Neoceti". PeerJ. 11. e14795. doi:10.7717/peerj.14795.
  195. ^ Gaetán, C. M.; Paolucci, F.; Buono, M. R. (2023). "A new squaloziphiid-like odontocete from the Early Miocene of Patagonia expands the cetacean diversity in the southwestern Atlantic Ocean". Journal of Vertebrate Paleontology. 42 (6). e2232425. doi:10.1080/02724634.2023.2232425. S2CID 260947656.
  196. ^ Lambert, O.; Collareta, A.; Benites-Palomino, A.; Merella, M.; de Muizon, C.; Bennion, R.; Urbina, M.; Bianucci, G. (2023). "A new platyrostrine sperm whale from the Early Miocene of the southeastern Pacific (East Pisco Basin, Peru) supports affinities with the southwestern Atlantic cetacean fauna". Geodiversitas. 45 (20): 659–679. doi:10.5252/geodiversitas2023v45a22. S2CID 265679399.
  197. ^ Bianucci, G.; Sielfeld, W.; Olguin, N. A.; Guzmán, G. (2023). "A new diminutive fossil ziphiid from the deep-sea floor off northern Chile and some remarks on the body size evolution and palaeobiogeography of the beaked whales". Acta Palaeontologica Polonica. 68 (3): 477–491. doi:10.4202/app.01076.2023. S2CID 261550172.
  198. ^ a b Kimura, T.; Hasegawa, Y.; Suzuki, T. (2022). "A New Species of Baleen Whale (Isanacetus-Group) from the Early Miocene, Japan". Paleontological Research. 27 (1): 85–101. doi:10.2517/PR210009. S2CID 252684197.
  199. ^ Coste, A.; Fordyce, R. E.; Loch, C. (2023). "A new dolphin with tusk-like teeth from the late Oligocene of New Zealand indicates evolution of novel feeding strategies". Proceedings of the Royal Society B: Biological Sciences. 290 (2000). 20230873. doi:10.1098/rspb.2023.0873. PMC 10265015. PMID 37312551.
  200. ^ Coste, Ambre; Fordyce, Robert; Loch, Carolina (8 November 2023). "A new fossil dolphin with tusk-like teeth from New Zealand and an analysis of procumbent teeth in fossil cetaceans". Journal of the Royal Society of New Zealand. Latest Articles (Fossil vertebrates from southern Zealandia): 738–757. doi:10.1080/03036758.2023.2267456. PMC 11459815. PMID 39440293. S2CID 265117864.
  201. ^ Velez-Juarbe, J. (2023). "New heterodont odontocetes from the Oligocene Pysht Formation in Washington State, U.S.A., and a reevaluation of Simocetidae (Cetacea, Odontoceti)". PeerJ. 11. e15576. doi:10.7717/peerj.15576. PMC 10292202. PMID 37377790.
  202. ^ Bianucci, G.; Lambert, O.; Urbina, M.; Merella, M.; Collareta, A.; Bennion, R.; Salas-Gismondi, R.; Benites-Palomino, A.; Post, K.; de Muizon, C.; Bosio, G.; Di Celma, C.; Malinverno, E.; Pierantoni, P. P.; Villa, I. M.; Amson, E. (2023). "A heavyweight early whale pushes the boundaries of vertebrate morphology". Nature. 620 (7975): 824–829. Bibcode:2023Natur.620..824B. doi:10.1038/s41586-023-06381-1. PMID 37532931. S2CID 260433513.
  203. ^ Guo, Zixuan; Kohno, Naoki (2023-02-15). "An Early Miocene kentriodontoid (Cetacea: Odontoceti) from the western North Pacific, and its implications for their phylogeny and paleobiogeography". PLOS ONE. 18 (2): e0280218. Bibcode:2023PLoSO..1880218G. doi:10.1371/journal.pone.0280218. ISSN 1932-6203. PMC 9931143. PMID 36791148.
  204. ^ Antar, Mohammed S.; Gohar, Abdullah S.; El-Desouky, Heba; Seiffert, Erik R.; El-Sayed, Sanaa; Claxton, Alexander G.; Sallam, Hesham M. (2023-08-10). "A diminutive new basilosaurid whale reveals the trajectory of the cetacean life histories during the Eocene". Communications Biology. 6 (1): 707. doi:10.1038/s42003-023-04986-w. ISSN 2399-3642. PMC 10415296. PMID 37563270.
  205. ^ Boessenecker, Robert W.; Geisler, Jonathan H. (2023-11-20). "New Skeletons of the Ancient Dolphin Xenorophus sloanii and Xenorophus simplicidens sp. nov. (Mammalia, Cetacea) from the Oligocene of South Carolina and the Ontogeny, Functional Anatomy, Asymmetry, Pathology, and Evolution of the Earliest Odontoceti". Diversity. 15 (11): 1154. doi:10.3390/d15111154. ISSN 1424-2818.
  206. ^ Burin, G.; Park, T.; James, T. D.; Slater, G. J.; Cooper, N. (2023). "The dynamic adaptive landscape of cetacean body size". Current Biology. 33 (9): 1787–1794.e3. Bibcode:2023CBio...33E1787B. doi:10.1016/j.cub.2023.03.014. PMID 36990088. S2CID 257775627.
  207. ^ Coombs, E. J.; Knapp, A.; Park, T.; Bennion, R. F.; McCurry, M. R.; Lanzetti, A.; Boessenecker, R. W.; McGowen, M. R. (2023). "Drivers of morphological evolution in the toothed whale jaw". Current Biology. 34 (2): 273–285.e3. doi:10.1016/j.cub.2023.11.056. PMID 38118449.
  208. ^ Davydenko, S.; Solyanik, E.; Tretiakov, R.; Kovalchuk, O.; Gol'din, P. (2023). "A cetacean limb from the Middle Eocene of Ukraine sheds light on mammalian adaptations to life in water". Biological Journal of the Linnean Society. 142 (3): 331–340. doi:10.1093/biolinnean/blad131.
  209. ^ Davydenko, S.; Gol'din, P.; Bosselaers, M.; Vahldiek, B.; van Vliet, H. J. (2023). "Gross and microscopic anatomy of a tibia tentatively attributed to a cetacean from the Middle Eocene of Europe, with a note on the artiodactyl Anoplotherium and on the perissodactyl Lophiodon". PalZ. 97 (3): 627–652. Bibcode:2023PalZ...97..627D. doi:10.1007/s12542-023-00653-x. S2CID 259897461.
  210. ^ van Vliet, H. J.; Bosselaers, M.; Paijmans, T.; Calzada, S. (2023). "An archaeocete vertebra re-examined: indications for a small-sized species of Pachycetus from Spain, Europe". Deinsea. 21: 1–16.
  211. ^ Davydenko, S.; Tretiakov, R.; Gol'din, P. (2023). "Diverse bone microanatomy in cetaceans from the Eocene of Ukraine further documents early adaptations to fully aquatic lifestyle". Frontiers in Earth Science. 11. 1168681. Bibcode:2023FrEaS..1168681D. doi:10.3389/feart.2023.1168681.
  212. ^ Tosetto, V.; Damarco, P.; Daniello, R.; Pavia, M.; Carnevale, G.; Bisconti, M. (2023). "Cranial Material of Long-Snouted Dolphins (Cetacea, Odontoceti, Eurhinodelphinidae) from the Early Miocene of Rosignano Monferrato, Piedmont (NW Italy): Anatomy, Paleoneurology, Phylogenetic Relationships and Paleobiogeography". Diversity. 15 (2). 227. doi:10.3390/d15020227.
  213. ^ Viglino, M.; Ezcurra, M. D.; Fordyce, R. E.; Loch, C. (2023). "The better to eat you with: morphological disparity and enamel ultrastructure in odontocetes". Scientific Reports. 13 (1). 16969. Bibcode:2023NatSR..1316969V. doi:10.1038/s41598-023-44112-8. PMC 10560669. PMID 37807006.
  214. ^ Benites-Palomino, A.; Vélez-Juarbe, J.; De Gracia, C.; Jaramillo, C. (2023). "Bridging two oceans: small toothed cetaceans (Odontoceti) from the Late Miocene Chagres Formation, eastern Caribbean (Colon, Panama)". Biology Letters. 19 (6). 20230124. doi:10.1098/rsbl.2023.0124. PMC 10282590. PMID 37340808.
  215. ^ Rule, J. P.; Duncan, R. J.; Marx, F. G.; Pollock, T. I.; Evans, A. R.; Fitzgerald, E. M. G. (2023). "Giant baleen whales emerged from a cold southern cradle". Proceedings of the Royal Society B: Biological Sciences. 290 (2013). 20232177. doi:10.1098/rspb.2023.2177. PMC 10730287. PMID 38113937.
  216. ^ Ritsche, I. S.; Hampe, O. (2023). "Two exceptional Balaenomorpha (Cetacea: Mysticeti) from the Biemenhorst Subformation (middle/late Miocene) of Bocholt (W Münsterland, Germany) with a critical appraisal on the anatomy of the periotic bone". Palaeontologia Electronica. 26 (3). 26.3.a37. doi:10.26879/1268.
  217. ^ Tanaka, Y.; Nagasawa, K.; Oba, S. (2023). "A New Fossil Rorqual Aff. Balaenoptera bertae Specimen from the Shinazawa Formation (Late Pliocene to Early Pleistocene), Yamagata, Japan". Paleontological Research. 27 (3): 324–332. doi:10.2517/PR210038. S2CID 255441190.
  218. ^ Govender, R.; Marx, F. G. (2023). "New cetacean fossils from the late Cenozoic of South Africa". Frontiers in Earth Science. 10. 1058104. Bibcode:2023FrEaS..1058104G. doi:10.3389/feart.2022.1058104.
  219. ^ Siarabi, S.; Kostopoulos, D. S.; Bartsiokas, A.; Rozzi, R. (2023). "Insular aurochs (Mammalia, Bovidae) from the Pleistocene of Kythera Island, Greece". Quaternary Science Reviews. 319. 108342. Bibcode:2023QSRv..31908342S. doi:10.1016/j.quascirev.2023.108342. S2CID 263817925.
  220. ^ van der Made, Jan; Rodríguez-Alba, Juan José; Martos, Juan Antonio; Gamarra, Jesús; Rubio-Jara, Susana; Panera, Joaquín; Yravedra, José (2023-03-14). "The fallow deer Dama celiae sp. nov. with two-pointed antlers from the Middle Pleistocene of Madrid, a contemporary of humans with Acheulean technology". Archaeological and Anthropological Sciences. 15 (4): 41. Bibcode:2023ArAnS..15...41V. doi:10.1007/s12520-023-01734-3. hdl:10261/307292. ISSN 1866-9565. S2CID 257498724.
  221. ^ Yu, Y.; Gao, H.; Li, Q.; Ni, X. (2023). "A new entelodont (Artiodactyla, Mammalia) from the late Eocene of China and its phylogenetic implications". Journal of Systematic Palaeontology. 21 (1). 2189436. Bibcode:2023JSPal..2189436Y. doi:10.1080/14772019.2023.2189436. S2CID 257895430.
  222. ^ Wang, X.; Li, Q.; Tseng, Z. J. (2023). "A new spiral-horned antelope, Gazellospira tsaparangensis sp. nov., from Pliocene Zanda Basin in Himalaya Mountain". Journal of Mammalian Evolution. 30 (4): 1067–1088. doi:10.1007/s10914-023-09692-2. S2CID 265502325.
  223. ^ a b Aiglstorfer, M.; Wang, S.-Q.; Cheng, J.; Xing, L.; Fu, J.; Mennecart, B. (2023). "Miocene Moschidae (Mammalia, Ruminantia) from the Linxia Basin (China) connect Europe and Asia and show an early evolutionary diversity of a today monogeneric family". Palaeogeography, Palaeoclimatology, Palaeoecology. 619. 111531. Bibcode:2023PPP...61911531A. doi:10.1016/j.palaeo.2023.111531. S2CID 257860518.
  224. ^ Wang, B.; Wang, Q.; Zhang, Z.-Q. (2023). "New materials of Lophiomeryx (Artiodactyla: Lophiomerycidae) from the Oligocene of Nei Mongol, China". Journal of Mammalian Evolution. 30 (4): 1047–1066. doi:10.1007/s10914-023-09691-3. S2CID 265553848.
  225. ^ a b Bai, Bin; Wang, Yuan-Qing; Theodor, Jessica M.; Meng, Jin (2023). "Small artiodactyls with tapir-like teeth from the middle Eocene of the Erlian Basin, Inner Mongolia, China". Frontiers in Earth Science. 11. Bibcode:2023FrEaS..1117911B. doi:10.3389/feart.2023.1117911. ISSN 2296-6463.
  226. ^ Vislobokova, I. A. (2023). "Ovis gracilis sp. nov. (Artiodactyla, Bovidae) from the Lower Pleistocene of the Taurida Cave in the Crimea and history of the genus Ovis". Paleontological Journal. 57 (5): 573–585. Bibcode:2023PalJ...57..573V. doi:10.1134/S0031030123050118. S2CID 262547358.
  227. ^ Liu, W.; Hou, S.; Zhang, X. (2023). "Revision of the Late Cenozoic camelids from the Yushe Basin, Shanxi, with comments on Chinese fossil camels". Quaternary Sciences. 43 (3): 712–751. doi:10.11928/j.issn.1001-7410.2023.03.05.
  228. ^ Prothero, D. R.; Beatty, B. L.; Marriott, K. (2023). "Systematics of the long-nosed floridatraguline camels (Artiodactyla: Camelidae)". New Mexico Museum of Natural History and Science Bulletin. 94: 533–545.
  229. ^ Vislobokova, I. A. (2023). "A new antelope Tavridia gromovi gen. et sp. nov. (Artiodactyla, Bovidae) from the Lower Pleistocene of the Taurida cave in the Crimea". Paleontological Journal. 57 (4): 463–472. Bibcode:2023PalJ...57..463V. doi:10.1134/S0031030123040147. S2CID 261103229.
  230. ^ Orak, Z.; Kostopoulos, D. S.; Ataabadi, M. M. (2023). "Late Miocene large-sized Bovidae (Mammalia) from Dimeh, SW Iran: contribution to depositional diachrony and palaeobiogeography". Geobios. 78: 33–48. Bibcode:2023Geobi..78...33O. doi:10.1016/j.geobios.2023.05.001. S2CID 258872637.
  231. ^ Geraads, D.; McCrossin, M.; Benefit, B. (2023). "Bovidae (Mammalia) from the early Middle Miocene of Maboko, Kenya". Historical Biology: An International Journal of Paleobiology. 36 (3): 619–630. doi:10.1080/08912963.2023.2179397. S2CID 257307422.
  232. ^ Pandolfi, L.; Rook, L. (2023). "An enigmatic giraffid from the latest Miocene of Italy: Taxonomy, affinity, and paleobiogeographic implications". Journal of Mammalian Evolution. 30 (2): 403–413. doi:10.1007/s10914-023-09654-8. hdl:2158/1311561. S2CID 257491293.
  233. ^ Skeels Stevens, M.; Prothero, D. R.; Cleaveland, C.; Welsh, E.; Marriott, K.; Htun, T.; Balassa, D.; Olson, S. M.; Watmore, K. I.; Wheeler, D. (2023). "Systematics of the Late Oligocene and Miocene oreodonts (Merycoidodontidae: Artiodactyla)". New Mexico Museum of Natural History and Science Bulletin. 93: 1–226.
  234. ^ Weppe, R.; Condamine, F. L.; Guinot, G.; Maugoust, J.; Orliac, M. J. (2023). "Drivers of the artiodactyl turnover in insular western Europe at the Eocene–Oligocene Transition". Proceedings of the National Academy of Sciences of the United States of America. 120 (52): e2309945120. Bibcode:2023PNAS..12009945W. doi:10.1073/pnas.2309945120. PMC 10756263. PMID 38109543. S2CID 266359889.
  235. ^ Watmore, K. I.; Stevens, M. S.; Prothero, D. R.; Marriott, K. (2023). "Systematics of the late Eocene 'oreonetine' oreodonts (Merycoidodontidae: Artiodactyla)". Historical Biology: An International Journal of Paleobiology. 36 (9): 1834–1853. doi:10.1080/08912963.2023.2234390. S2CID 259941639.
  236. ^ Carbot-Chanona, G.; Jiménez-Moreno, F. J.; Palomino-Merino, M. R.; Agustín-Serrano, R. (2023). "A new specimen of Camelops hesternus (Artiodactyla, Camelidae) from Valsequillo, Puebla, Mexico, with comments about their dietary preferences and the population density of the species". Journal of South American Earth Sciences. 130. 104594. Bibcode:2023JSAES.13004594C. doi:10.1016/j.jsames.2023.104594. S2CID 262062519.
  237. ^ Tsubamoto, T.; Kunimatsu, Y.; Nakatsukasa, M. (2023). "Discovery of Cainochoerus (Mammalia, Artiodactyla, Suidae, Cainochoerinae) from the basal upper Miocene Nakali Formation, Kenya". PalZ. 97 (3): 621–626. Bibcode:2023PalZ...97..621T. doi:10.1007/s12542-023-00656-8. S2CID 259307207.
  238. ^ Wimberly, A. N. (2023). "Predicting body mass in Ruminantia using postcranial measurements". Journal of Morphology. 284 (10). e21636. doi:10.1002/jmor.21636. PMID 37708510. S2CID 261864163.
  239. ^ Keppeler, H.; Schultz, J. A.; Ruf, I.; Martin, T. (2023). "Cranial anatomy of Hypisodus minimus (Artiodactyla: Ruminantia) from the Oligocene Brule Formation of North America". Palaeontographica Abteilung A. 327 (1–3): 55–92. Bibcode:2023PalAA.327...55K. doi:10.1127/pala/2023/0140. S2CID 257336641.
  240. ^ Solounias, N.; Jukar, A. M. (2023). "A Reassessment of Some Giraffidae Specimens from the Late Miocene Faunas of Eurasia". In Isaac Casanovas-Vilar; Lars W. van den Hoek Ostende; Christine M. Janis; Juha Saarinen (eds.). Evolution of Cenozoic Land Mammal Faunas and Ecosystems. Vertebrate Paleobiology and Paleoanthropology. Springer. pp. 189–200. doi:10.1007/978-3-031-17491-9_12. ISBN 978-3-031-17490-2.
  241. ^ Avilla, L. S.; Román-Carrión, J. L.; Rotti, A. (2023). "A thorny taxonomic issue of Quaternary deer (Cervidae: Mammalia) from the South American Highlands resolved based on the recognition of a paleopathology". Journal of Quaternary Science. 39 (8): 1200–1205. doi:10.1002/jqs.3577. S2CID 265082637.
  242. ^ Uzunidis, A.; Rivals, F.; Rufà, A.; Blasco, R.; Rosell, J. (2023). "The Exceptional Presence of Megaloceros giganteus in North-Eastern Iberia and Its Palaeoecological Implications: The Case of Teixoneres Cave (Moià, Barcelona, Spain)". Diversity. 15 (2). 299. doi:10.3390/d15020299. hdl:10400.1/19317.
  243. ^ van der Knaap, W. O.; van Geel, B.; van Leeuwen, J. F. N.; Roescher, F.; Mol, D. (2023). "Pollen reveals the diet and environment of an extinct Pleistocene giant deer from the Netherlands". Review of Palaeobotany and Palynology. 320. 105021. doi:10.1016/j.revpalbo.2023.105021. S2CID 265239237.
  244. ^ Mecozzi, B.; Sardella, R.; Breda, M. (2023). "Late Early to late Middle Pleistocene medium-sized deer from the Italian Peninsula: implications for taxonomy and biochronology". Palaeobiodiversity and Palaeoenvironments. 104: 191–215. doi:10.1007/s12549-023-00583-1. hdl:11573/1706615. S2CID 260792719.
  245. ^ Klein, F.; Costeur, L.; Ferreira, G. S.; Hartung, J. (2023). "The bony labyrinth of the Miocene boselaphin bovid Miotragocerus pannoniae: insights into ontogeny". Journal of Vertebrate Paleontology. 42 (2). e2153226. doi:10.1080/02724634.2022.2153226. S2CID 255621131.
  246. ^ Shi, Q.-Q.; Zhang, Z.-Q. (2023). "New material of Miotragocerus (Bovidae, Artiodactyla) from northern China and its systematic implications". Journal of Systematic Palaeontology. 21 (1). 2194891. Bibcode:2023JSPal..2194891S. doi:10.1080/14772019.2023.2194891. S2CID 258363831.
  247. ^ Martin, J. E.; Mead, J. I. (2023). "The earliest known North American bovid, Neotragocerus". Journal of Vertebrate Paleontology. 42 (2). e2163176. doi:10.1080/02724634.2022.2163176. S2CID 256724685.
  248. ^ Ovchinnikov, I. V.; McCann, B. (2023). "Mitogenomes revealed the history of bison colonization of Northern Plains after the Last Glacial Maximum". Scientific Reports. 13 (1). 11417. Bibcode:2023NatSR..1311417O. doi:10.1038/s41598-023-37599-8. PMC 10349043. PMID 37452114.
  249. ^ Kostopoulos, D.; Sevim Erol, A.; Mayda, S. (2023). "Late Miocene 'ovibovin' bovids (Mammalia, Bovidae) from Çorakyerler, Turkey". Journal of Vertebrate Paleontology. 43 (1). e2232850. doi:10.1080/02724634.2023.2232850. S2CID 260846500.
  250. ^ Kostopoulos, D. S.; Merceron, G. (2023). "On Procobus Khomenko, 1913 (Mammalia: Artiodactyla: Bovidae), with new evidence from the Late Miocene of Greece". Palaeoworld. 33 (4): 1128–1138. doi:10.1016/j.palwor.2023.06.008. S2CID 259687757.
  251. ^ O'Brien, K.; Podkovyroff, K.; Fernandez, D. P.; Tryon, C. A.; Ashioya, L.; Faith, J. T. (2023). "Migratory behavior in the enigmatic Late Pleistocene bovid Rusingoryx atopocranion". Frontiers in Environmental Archaeology. 2. 1237714. doi:10.3389/fearc.2023.1237714.
  252. ^ Titov, V. V.; Iltsevich, K. Yu.; Sablin, M. V. (2023). "Early Pleistocene Bovidae from Palan-Tyukan (Azerbaijan)". Proceedings of the Zoological Institute of the Russian Academy of Sciences. 327 (2): 183–201. doi:10.31610/trudyzin/2023.327.2.183. S2CID 259669359.
  253. ^ Orliac, M. J.; Mourlam, M. J.; Boisserie, J.-R.; Costeur, L.; Lihoreau, F. (2023). "Evolution of semiaquatic habits in hippos and their extinct relatives: insights from the ear region". Zoological Journal of the Linnean Society. 198 (4): 1092–1105. doi:10.1093/zoolinnean/zlac112.
  254. ^ Jiménez-Hidalgo, E.; Carbot-Chanona, G. (2023). "First Mexican records of Anthracotheriidae (Mammalia: Artiodactyla)". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 114 (1–2): 109–113. Bibcode:2023EESTR.114..109J. doi:10.1017/S1755691022000238. S2CID 256314130.
  255. ^ Gernelle, K.; Lihoreau, F.; Boisserie, J.-R.; Marivaux, L.; Métais, G.; Antoine, P.-O. (2023). "New material of Parabrachyodus hyopotamoides from Samane Nala, Bugti Hills (Pakistan) and the origin of Merycopotamini (Mammalia: Hippopotamoidea)". Zoological Journal of the Linnean Society. 198: 278–309. doi:10.1093/zoolinnean/zlac111.
  256. ^ Martino, R.; Rook, L.; Mateus, O.; Pandolfi, L. (2023). "The Late Miocene hippopotamid, Archaeopotamus pantanellii nov. comb., from the Casino Basin (Tuscany, Italy): paleobiogeographic implications". Historical Biology: An International Journal of Paleobiology. 36 (4): 891–904. doi:10.1080/08912963.2023.2194912. hdl:10261/307410. S2CID 258320695.
  257. ^ Pandolfi, L.; Martino, R.; Belvedere, M.; Martínez-Navarro, B.; Medin, T.; Libsekal, Y.; Rook, L. (2023). "The latest Early Pleistocene hippopotami from the human-bearing locality of Buia (Eritrea)". Quaternary Science Reviews. 308. 108039. Bibcode:2023QSRv..30808039P. doi:10.1016/j.quascirev.2023.108039. S2CID 258024770.
  258. ^ Miszkiewicz, J. J.; Athanassiou, A.; Lyras, G. A.; van der Geer, A. A. E. (2023). "Rib remodelling changes with body size in fossil hippopotamuses from Cyprus and Greece". Journal of Mammalian Evolution. 30 (4): 1031–1046. doi:10.1007/s10914-023-09688-y. S2CID 265001884.
  259. ^ Mecozzi, B.; Iannucci, A.; Mancini, M.; Tentori, D.; Cavasinni, C.; Conti, J.; Messina, M. Y.; Sarra, A.; Sardella, R. (2023). "Reinforcing the idea of an early dispersal of Hippopotamus amphibius in Europe: Restoration and multidisciplinary study of the skull from the Middle Pleistocene of Cava Montanari (Rome, central Italy)". PLOS ONE. 18 (11). e0293405. Bibcode:2023PLoSO..1893405M. doi:10.1371/journal.pone.0293405. PMC 10664965. PMID 37992018.
  260. ^ Rautela, A.; Bajpai, S. (2023). "Gujaratia indica, the oldest artiodactyl (Mammalia) from South Asia: new dental material and phylogenetic relationships". Journal of Systematic Palaeontology. 21 (1). 2267553. Bibcode:2023JSPal..2167553R. doi:10.1080/14772019.2023.2267553. S2CID 265014823.
  261. ^ Jiangzuo, Q.; Werdelin, L.; Sanisidro, O.; Yang, R.; Fu, J.; Li, S.; Wang, S.; Deng, T. (2023). "Origin of adaptations to open environments and social behaviour in sabretoothed cats from the northeastern border of the Tibetan Plateau". Proceedings of the Royal Society B: Biological Sciences. 290 (1997). 20230019. doi:10.1098/rspb.2023.0019. PMC 10113030. PMID 37072045.
  262. ^ Hontecillas, D.; Soibelzon, L. H.; Montalvo, C. I.; Bonini, R. A. (2023). "Cyonasua zettii sp. nov. (Procyonidae, Mammalia) from the Late Miocene of Central Argentina and a review of the fossil record of Cerro Azul Formation". Historical Biology: An International Journal of Paleobiology: 1–17. doi:10.1080/08912963.2023.2284421. S2CID 265864709.
  263. ^ a b Jiangzuo, Q.; Rabe, C.; Abella, J.; Govender, R.; Valenciano, A. (2023). "Langebaanweg's sabertooth guild reveals an African Pliocene evolutionary hotspot for sabertooths (Carnivora; Felidae)". iScience. 26 (8). 107212. Bibcode:2023iSci...26j7212J. doi:10.1016/j.isci.2023.107212. PMC 10440717. PMID 37609637. S2CID 260053601.
  264. ^ Farjand, A.; Fu, L.-Y.; Jiangzuo, Q.-G.; Liu, Z.-H.; Wang, J.; Zhou, X.-Y.; Bi, S.-D.; Wang, L.-H. (2023). "A new species of Eirictis (Mammalia, Carnivora, Mustelidae) from Lower Pleistocene of Yuanmou Basin, Yunnan, China". Palaeoworld. 33 (4): 1139–1151. doi:10.1016/j.palwor.2023.05.005. S2CID 259802699.
  265. ^ Wang, X.; Emry, R. J.; Boyd, C. A.; Person, J. J.; White, S. C.; Tedford, R. H. (2023). "An exquisitely preserved skeleton of Eoarctos vorax (nov. gen. et sp.) from Fitterer Ranch, North Dakota (early Oligocene) and systematics and phylogeny of North American early arctoids (Carnivora, Caniformia)". Journal of Vertebrate Paleontology. 42 (Supplement). 1–123. doi:10.1080/02724634.2022.2145900. S2CID 259025727.
  266. ^ Jiangzuo, Q.; Flynn, J. J.; Wang, S.; Hou, S.; Deng, T. (2023). "New fossil giant panda relatives (Ailuropodinae, Ursidae): a basal lineage of gigantic Mio-Pliocene cursorial carnivores". American Museum Novitates (3996): 1–71. doi:10.1206/3996.1. hdl:2246/7315. S2CID 257508340.
  267. ^ Zhang, X.-Y.; Bai, B.; Wang, Y.-Q. (2023). "Bear or bear-dog? An enigmatic arctoid carnivoran from the late Eocene of Asia". Frontiers in Earth Science. 11. 1137891. Bibcode:2023FrEaS..1137891Z. doi:10.3389/feart.2023.1137891.
  268. ^ Jiang, H.; Liu, J.; Jiangzuo, Q.; Ning, J. (2023). "The latest ancestor of extant raccoon-dog from Zhoukoudian, Beijing, China, highlights a complex or convoluted transition on the dietary habits". Historical Biology: An International Journal of Paleobiology: 1–23. doi:10.1080/08912963.2023.2276147. S2CID 265231585.
  269. ^ de Bonis, L.; Chaimanee, Y.; Grohé, C.; Chavasseau, O.; Mazurier, A.; Suraprasit, K.; Jaeger, J. J. (2023). "A new large pantherine and a sabre-toothed cat (Mammalia, Carnivora, Felidae) from the late Miocene hominoid-bearing Khorat sand pits, Nakhon Ratchasima Province, northeastern Thailand" (PDF). The Science of Nature. 110 (5). 42. Bibcode:2023SciNa.110...42D. doi:10.1007/s00114-023-01867-4. PMID 37584870. S2CID 260901770.
  270. ^ Hemmer, H. (2023). "The evolution of the palaeopantherine cats, Palaeopanthera gen. nov. blytheae (Tseng et al., 2014) and Palaeopanthera pamiri (Ozansoy, 1959) comb. nov. (Mammalia, Carnivora, Felidae)". Palaeobiodiversity and Palaeoenvironments. 103 (4): 827–839. Bibcode:2023PdPe..103..827H. doi:10.1007/s12549-023-00571-5. S2CID 257842190.
  271. ^ Jiangzuo, Q.; Wang, Y.; Ge, J.; Liu, S.; Song, Y.; Jin, C.; Jiang, H.; Liu, J. (2023). "Discovery of jaguar from northeastern China middle Pleistocene reveals an intercontinental dispersal event". Historical Biology: An International Journal of Paleobiology. 35 (3): 293–302. Bibcode:2023HBio...35..293J. doi:10.1080/08912963.2022.2034808. S2CID 246693903.
  272. ^ Everett, Christopher J.; Deméré, Thomas A.; Wyss, André R. (2023-03-23). "A new species of Pinnarctidion from the Pysht Formation of Washington State (U.S.A.) and a phylogenetic analysis of basal pan-pinnipeds (Eutheria, Carnivora)". Journal of Vertebrate Paleontology. 42 (3): e2178930. doi:10.1080/02724634.2023.2178930. ISSN 0272-4634. S2CID 257731013.
  273. ^ Morlo, M.; Nengo, I. O.; Friscia, A.; Mbogo, W.; Miller, E. R.; Russo, G. A. (2023). "Presence of a giant amphicyonid and other carnivores (Mammalia) from the Middle Miocene of Napudet, Kenya". Journal of Vertebrate Paleontology. 42 (2). e2160643. doi:10.1080/02724634.2022.2160643. S2CID 256354136.
  274. ^ Varajão de Latorre, D. (2023). "Fossil bacula of five species of Borophaginae (Family: Canidae): Implications for their reproductive biology". PLOS ONE. 18 (1). e0280327. Bibcode:2023PLoSO..1880327V. doi:10.1371/journal.pone.0280327. PMC 9844895. PMID 36649261.
  275. ^ Frosali, S.; Bartolini-Lucenti, S.; Madurell-Malapeira, J.; Urciuoli, A.; Costeur, L.; Rook, L. (2023). "First digital study of the frontal sinus of stem-Canini (Canidae, Carnivora): evolutionary and ecological insights throughout advanced diagnostic in paleobiology". Frontiers in Ecology and Evolution. 11. 1173341. doi:10.3389/fevo.2023.1173341. hdl:2158/1311559.
  276. ^ Caro, F. J.; Labarca, R.; Prevosti, F. J.; Villavicencio, N.; Jarpa, G. M.; Herrera, K. A.; Correa-Lau, J.; Latorre, C.; Santoro, C. M. (2023). "First record of cf. Aenocyon dirus (Leidy, 1858) (Carnivora, Canidae), from the Upper Pleistocene of the Atacama Desert, northern Chile". Journal of Vertebrate Paleontology. 42 (4). e2190785. doi:10.1080/02724634.2023.2190785. S2CID 258757704.
  277. ^ Reynolds, A. R.; Lowi-Merri, T. M.; Brannick, A. L.; Seymour, K. L.; Churcher, C. S.; Evans, D. C. (2023). "Dire wolf (Canis dirus) from the late Pleistocene of southern Canada (Medicine Hat, Alberta)". Journal of Quaternary Science. 38 (6): 938–946. Bibcode:2023JQS....38..938R. doi:10.1002/jqs.3516. S2CID 257905013.
  278. ^ Martínez-Navarro, B.; Gossa, T.; Carotenuto, F.; Bartolini-Lucenti, S.; Palmqvist, P.; Asrat, A.; Figueirido, B.; Rook, L.; Niespolo, E. M.; Renne, P. R.; Herzlinger, G.; Hovers, E. (2023). "The earliest Ethiopian wolf: implications for the species evolution and its future survival". Communications Biology. 6 (1). 530. doi:10.1038/s42003-023-04908-w. PMC 10187515. PMID 37193884.
  279. ^ Prevosti, F. J. (2023). "Sistemática de los grandes cánidos (Mammalia, Carnivora,Canidae) fósiles de América del Sur". Publicación Electrónica de la Asociación Paleontológica Argentina. 23 (1): 78–192. doi:10.5710/PEAPA.28.10.2022.417. S2CID 258872658.
  280. ^ Lyras, G. A.; Werdelin, L.; van der Geer, B. G. M.; van der Geer, A. A. E. (2023). "Fossil brains provide evidence of underwater feeding in early seals". Communications Biology. 6 (1). 747. doi:10.1038/s42003-023-05135-z. PMC 10435510. PMID 37591929.
  281. ^ Pérez-Claros, J. A. (2023). "An ecomorphological characterization of the percrocutoid hyaenids: a multivariate approach using postcanine dentition". Journal of Vertebrate Paleontology. 42 (5). e2197972. doi:10.1080/02724634.2023.2197972. S2CID 258371548.
  282. ^ Kargopoulos, N.; Roussiakis, S.; Kampouridis, P.; Koufos, G. (2023). "Interspecific competition in ictitheres (Carnivora: Hyaenidae) from the Late Miocene of Eurasia". Comptes Rendus Palevol. 22 (3): 33–44. doi:10.5852/cr-palevol2023v22a3. S2CID 256438030.
  283. ^ Tamagnini, D.; Michaud, M.; Meloro, C.; Raia, P.; Soibelzon, L.; Tambusso, P. S.; Varela, L.; Maiorano, L. (2023). "Conical and sabertoothed cats as an exception to craniofacial evolutionary allometry". Scientific Reports. 13 (1). 13571. Bibcode:2023NatSR..1313571T. doi:10.1038/s41598-023-40677-6. PMC 10442348. PMID 37604901.
  284. ^ Figueirido, B.; Pérez-Ramos, A.; Hotchner, A.; Lovelace, D.; Pastor, F. J.; Martín-Serra, A. (2023). "Elbow-joint morphology in the North American 'cheetah-like' cat Miracinonyx trumani". Biology Letters. 19 (1). 20220483. doi:10.1098/rsbl.2022.0483. PMC 9873470. PMID 36693427.
  285. ^ Puzachenko, A. Yu.; Baryshnikov, G. F. (2023). "Geographical, temporal variability and sexual size dimorphism of mandible in cave lion (Panthera spelaea) across Northern Eurasia". Historical Biology: An International Journal of Paleobiology. 36 (7): 1383–1400. doi:10.1080/08912963.2023.2214578. S2CID 258861920.
  286. ^ Manthi, F. K.; Brown, F. H.; Plavcan, M. J.; Werdelin, L. (2018). "Gigantic lion, Panthera leo, from the Pleistocene of Natodomeri, eastern Africa". Journal of Paleontology. 92 (2): 305–312. Bibcode:2018JPal...92..305M. doi:10.1017/jpa.2017.68.
  287. ^ Sherani, S.; Sherani, M. (2023). "What kind of "lion" was the Natodomeri lion? – a comparative analysis of the Natodomeri lion with other Pleistocene lions". Historical Biology: An International Journal of Paleobiology: 1–6. doi:10.1080/08912963.2023.2293139. S2CID 266357630.
  288. ^ Sun, X.; Liu, Y.-C.; Tiunov, M. P.; Gimranov, D. O.; Zhuang, Y.; Han, Y.; Driscoll, C. A.; Pang, Y.; Li, C.; Pan, Y.; Sandoval Velasco, M.; Gopalakrishnan, S.; Yang, R.-Z.; Li, B.-G.; Jin, K.; Xu, X.; Uphyrkina, O.; Huang, Y.; Wu, X.-H.; Gilbert, M. T. P.; O'Brien, S. J.; Yamaguchi, N.; Luo, S.-J. (2023). "Ancient DNA reveals genetic admixture in China during tiger evolution". Nature Ecology & Evolution. 7 (11): 1914–1929. Bibcode:2023NatEE...7.1914S. doi:10.1038/s41559-023-02185-8. PMID 37652999. S2CID 261430066.
  289. ^ Deutsch, A. R.; Langerhans, R. B.; Flores, D.; Hartstone-Rose, A. (2023). "The roar of Rancho La Brea? Comparative anatomy of modern and fossil felid hyoid bones". Journal of Morphology. 284 (10). e21627. doi:10.1002/jmor.21627. PMID 37708512. S2CID 261090355.
  290. ^ Gross, M.; Prieto, J.; Grímsson, F.; Bojar, H.-P. (2023). "Hyena and 'false' sabre-toothed cat coprolites from the late Middle Miocene of south-eastern Austria". Historical Biology: An International Journal of Paleobiology. 36 (9): 1903–1922. doi:10.1080/08912963.2023.2237979. S2CID 260231111.
  291. ^ Madern, P. A.; Braumuller, Y.; Mavikurt, A. C.; Mayda, S.; Bergwerff, L.; Janssen, N.; Cantalapiedra, J.; Robles, J. M.; Casanovas-Vilar, I.; van Welzen, P. C.; van den Hoek Ostende, L. W. (2023). "Where's dinner? Variation in carnivoran distributional responses to the mid-Vallesian faunal turnover". Palaeobiodiversity and Palaeoenvironments. 104: 181–190. doi:10.1007/s12549-023-00588-w. S2CID 261844641.
  292. ^ Sianis, P. D.; Athanassiou, A.; Roussiakis, S.; Iliopoulos, G. (2023). "Carnivora from the Early Pleistocene locality of Karnezeika (Southern Greece)". Geobios. 79: 43–59. Bibcode:2023Geobi..79...43S. doi:10.1016/j.geobios.2023.06.002. S2CID 259908862.
  293. ^ Werdelin, L.; Drăguşin, V.; Robu, M.; Petculescu, A.; Popescu, A.; Curran, S.; Terhune, C. E. (2023). "Carnivora from the Early Pleistocene of Grăunceanu (Olteţ River Valley, Dacian Basin, Romania)". Rivista Italiana di Paleontologia e Stratigrafia. 129 (3): 457–476. doi:10.54103/2039-4942/20015. S2CID 261600839.
  294. ^ Schmökel, H.; Farrell, A.; Balisi, M. F. (2023). "Subchondral defects resembling osteochondrosis dissecans in joint surfaces of the extinct saber-toothed cat Smilodon fatalis and dire wolf Aenocyon dirus". PLOS ONE. 18 (7). e0287656. Bibcode:2023PLoSO..1887656S. doi:10.1371/journal.pone.0287656. PMC 10337945. PMID 37436967.
  295. ^ Morgan, G. S.; Czaplewski, N. J.; Rincon, A. F.; Bloch, J. I.; Wood, A. R.; MacFadden, B. J. (2023). "A new early Miocene bat (Chiroptera: Phyllostomidae) from Panama confirms middle Cenozoic chiropteran dispersal between the Americas". Journal of Mammalian Evolution. 30 (4): 963–993. doi:10.1007/s10914-023-09690-4. S2CID 265554298.
  296. ^ Lopatin, A. V. (2023). "Eptesicus nilssonii varangus subsp. nov. (Vespertilionidae, Chiroptera) from the Lower Pleistocene of the Taurida cave in Crimea". Doklady Rossijskoj Akademii Nauk. Nauki O Zhizni. 510 (1): 308–315. doi:10.31857/S2686738923600073.
  297. ^ a b c Morgan, G. S.; Czaplewski, N. J. (2023). "New bats in the tropical family Emballonuridae (Mammalia: Chiroptera) from the Oligocene and early Miocene of Florida". Bulletin of the Florida Museum of Natural History. 60 (3): 133–234. doi:10.58782/flmnh.wefq4531.
  298. ^ Rietbergen, T. B.; van den Hoek Ostende, L. W.; Aase, A.; Jones, M. F.; Medeiros, E. D.; Simmons, N. B. (2023). "The oldest known bat skeletons and their implications for Eocene chiropteran diversification". PLOS ONE. 18 (4). e0283505. Bibcode:2023PLoSO..1883505R. doi:10.1371/journal.pone.0283505. PMC 10096270. PMID 37043445.
  299. ^ Lopatin, A. V. (2023). "Rhinolophus mehelyi scythotauricus subsp. nov. (Rhinolophidae, Chiroptera) from the Lower Pleistocene of the Taurida Cave in Crimea". Doklady Biological Sciences. 509 (1): 95–99. doi:10.1134/S0012496623700254. PMID 37208573. S2CID 258789669.
  300. ^ Hand, S. J.; Maugoust, J.; Beck, R. M. D.; Orliac, M. J. (2023). "A 50-million-year-old, three-dimensionally preserved bat skull supports an early origin for modern echolocation". Current Biology. 33 (21): 4624–4640.e21. Bibcode:2023CBio...33E4624H. doi:10.1016/j.cub.2023.09.043. hdl:1959.4/unsworks_84767. PMID 37858341. S2CID 264296063.
  301. ^ Hand, S. J.; Archer, M.; Gillespie, A.; Myers, T. (2023). "Xenorhinos bhatnagari sp. nov., a new, nasal-emitting trident bat (Rhinonycteridae, Rhinolophoidea) from early Miocene forests in northern Australia". The Anatomical Record. 306 (11): 2693–2715. doi:10.1002/ar.25210. PMID 36995152. S2CID 257835075.
  302. ^ Czaplewski, N. J.; Smith, K. S. (2023). "Clarendonian (late Miocene) bats (Chiroptera, Vespertilionidae and Molossidae) from the Ogallala Formation, High Plains of Oklahoma, USA". The Southwestern Naturalist. 67 (1): 77–86. doi:10.1894/0038-4909-67.1.77. S2CID 258405955.
  303. ^ Lopatin, A. V. (2023). "Early Pleistocene Serotine Bat Eptesicus praeglacialis (Vespertilionidae, Chiroptera) from the Taurida Cave in Crimea". Doklady Biological Sciences. 508 (1): 85–94. doi:10.1134/S0012496622060102. PMID 37186053. S2CID 258314346.
  304. ^ a b c d Jones, M. F.; Beard, K. C. (2023). "Nyctitheriidae (Mammalia, ?Eulipotyphla) from the Late Paleocene of Big Multi Quarry, Southern Wyoming, and a Revision of the Subfamily Placentidentinae". Annals of Carnegie Museum. 88 (2): 115–159. doi:10.2992/007.088.0202. S2CID 264449574.
  305. ^ Korth, W. W.; Boyd, C. A.; Emry, R. J. (2023). "Additional small mammals from the Oligocene Brule Formation (Whitneyan) of southwestern North Dakota". Paludicola. 14 (2): 57–74.
  306. ^ Cailleux, F.; van den Hoek Ostende, L. W.; Joniak, P. (2023). "The late Miocene Erinaceidae and Dimylidae (Eulipotyphla, Mammalia) from the Pannonian region, Slovakia". Journal of Paleontology. 97 (4): 777–798. Bibcode:2023JPal...97..777C. doi:10.1017/jpa.2023.50. S2CID 265506986.
  307. ^ Orihuela León, J. (2023). "Revision of the extinct island-shrews Nesophontes (Mammalia: Eulipotyphla: Nesophontidae) from Cuba". Journal of South American Earth Sciences. 130. 104544. Bibcode:2023JSAES.13004544O. doi:10.1016/j.jsames.2023.104544. S2CID 261422211.
  308. ^ Sun, D.; Li, S.; Wang, S.; Deng, T. (2023). "Early Miocene Aprotodon (Perissodactyla, Rhinocerotidae) from Northern China". Historical Biology: An International Journal of Paleobiology: 1–7. doi:10.1080/08912963.2023.2288618. S2CID 265584612.
  309. ^ Santos, S.; Prothero, D. R.; Welsh, E. (2023). "A new species of extinct rhinoceros from the late Oligocene of South Dakota". New Mexico Museum of Natural History and Science Bulletin. 94: 617–622.
  310. ^ Lu, X.; Deng, T.; Sun, B.; Hou, Y.; Rummy, P.; Sun, D.; Li, S. (2023). "First report of the genus Eggysodon from Asia". Historical Biology: An International Journal of Paleobiology. 36 (10): 2167–2173. doi:10.1080/08912963.2023.2243466. S2CID 260911356.
  311. ^ Perales-Gogenola, L.; Badiola, A.; Gómez-Olivencia, A.; Pereda-Suberbiola, X. (2023). "A remarkable new paleotheriid (Mammalia) in the endemic Iberian Eocene perissodactyl fauna". Journal of Vertebrate Paleontology. 42 (4). e2189447. doi:10.1080/02724634.2023.2189447. S2CID 258663753.
  312. ^ Pandolfi, Luca; Martino, Roberta (2023-01-20). "Taxonomy and phylogeny of the smallest Miocene rhinocerotid Parvorhinus n. gen. (Mammalia, Rhinocerotidae)". Palaeoworld. 33: 229–240. doi:10.1016/j.palwor.2023.01.009. hdl:11563/163195. ISSN 1871-174X. S2CID 256152126.
  313. ^ Sun, D.; Deng, T.; Wang, S. (2023). "The first record of the genus Prosantorhinus (Perissodactyla: Rhinocerotidae) of East Asia". Zoological Journal of the Linnean Society. 202 (2). doi:10.1093/zoolinnean/zlad183.
  314. ^ Lu, X.; Gao, F.; Zi, X.; Li, C.; Liu, X.; Xie, L.; Luo, L.; Hua, Y. (2023). "New materials of rhinoceros from the Neogene basins of Western Yunnan, China". Quaternary Sciences. 43 (3): 692–703. doi:10.11928/j.issn.1001-7410.2023.03.03.
  315. ^ Sun, D.; Deng, T.; Lu, X.; Wang, S. (2023). "A new elasmothere genus and species from the middle Miocene of Tongxin, Ningxia, China, and its phylogenetic relationship". Journal of Systematic Palaeontology. 21 (1). 2236619. Bibcode:2023JSPal..2136619S. doi:10.1080/14772019.2023.2236619. S2CID 261016608.
  316. ^ Kampouridis, P.; Rățoi, B. G.; Ursachi, L. (2023). "New evidence for the unique coexistence of two subfamilies of clawed perissodactyls (Mammalia, Chalicotheriidae) in the Upper Miocene of Romania and the Eastern Mediterranean". Journal of Mammalian Evolution. 30 (3): 641–656. doi:10.1007/s10914-023-09657-5. S2CID 258498576.
  317. ^ Pandolfi, L.; Sorbelli, L.; Oms, O.; Rodriguez-Salgado, P.; Campeny, G.; Gómez de Soler, B.; Grandi, F.; Agustí, J.; Madurell-Malapeira, J. (2023). "The Tapirus from Camp dels Ninots (NE Iberia): implications for morphology, morphometry and phylogeny of Neogene Tapiridae". Journal of Systematic Palaeontology. 21 (1). 2250117. Bibcode:2023JSPal..2150117P. doi:10.1080/14772019.2023.2250117. S2CID 264329077.
  318. ^ Veine-Tonizzo, L.; Tissier, J.; Bukhsianidze, M.; Vasilyan, D.; Becker, D. (2023). "Cranial morphology and phylogenetic relationships of Amynodontidae Scott & Osborn, 1883 (Perissodactyla, Rhinocerotoidea)". Comptes Rendus Palevol. 22 (8): 109–142. doi:10.5852/cr-palevol2023v22a8. S2CID 257644682.
  319. ^ Lu, X.-K.; Deng, T.; Pandolfi, L. (2023). "Reconstructing the phylogeny of the hornless rhinoceros Aceratheriinae". Frontiers in Ecology and Evolution. 11. 1005126. doi:10.3389/fevo.2023.1005126.
  320. ^ Lu, X.-K.; Deng, T.; Rummy, P.; Zheng, X.-T.; Zhang, Y.-T. (2023). "Reproduction of a fossil rhinoceros from 18 mya and origin of litter size in perissodactyls". iScience. 26 (10). 107800. Bibcode:2023iSci...26j7800L. doi:10.1016/j.isci.2023.107800. PMC 10514446. PMID 37744027. S2CID 261476412.
  321. ^ Kampouridis, P.; Svorligkou, G.; Kargopoulos, N.; Spassov, N.; Böhme, M. (2023). "Revision of the Late Miocene hornless rhinocerotids from Samos Island (Greece) with the designation of neotypes and implications for the European chilotheres". Journal of Vertebrate Paleontology. 43 (1). e2254360. doi:10.1080/02724634.2023.2254360.
  322. ^ Li, S.-J.; Deng, T. (2023). "Restudy of Rhinocerotini fossils from the Miocene Jiulongkou Fauna of China". Vertebrata PalAsiatica. 61 (3): 198–211. doi:10.19615/j.cnki.2096-9899.230630.
  323. ^ Shi, B.-Z.; Chen, S.-K.; Lu, X.-K.; Deng, T. (2023). "First report on rhinoceros from the late Neogene Qin Basin of Shanxi, China". The Anatomical Record. doi:10.1002/ar.25186. PMID 36869586. S2CID 257334792.
  324. ^ Belyaev, R. I.; Boeskorov, G. G.; Cheprasov, M. Yu.; Prilepskaya, N. E. (2023). "A new discovery in the permafrost of Yakutia sheds light on the nasal horn morphology of the woolly rhinoceros". Journal of Morphology. 284 (9). e21626. doi:10.1002/jmor.21626. PMID 37585227. S2CID 260599805.
  325. ^ Yuan, J.; Sun, G.; Xiao, B.; Hu, J.; Wang, L.; Taogetongqimuge; Bao, L.; Hou, Y.; Song, S.; Jiang, S.; Wu, Y.; Pan, D.; Liu, Y.; Westbury, M. V.; Lai, X.; Sheng, G. (2023). "Ancient mitogenomes reveal a high maternal genetic diversity of Pleistocene woolly rhinoceros in Northern China". BMC Ecology and Evolution. 23 (1). 56. doi:10.1186/s12862-023-02168-0. PMC 10521388. PMID 37752413.
  326. ^ Seeber, P. A.; Palmer, Z.; Schmidt, A.; Chagas, A.; Kitagawa, K.; Marinova-Wolff, E.; Tafelmaier, Y.; Epp, L. S. (2023). "The first European woolly rhinoceros mitogenomes, retrieved from cave hyena coprolites, suggest long-term phylogeographic differentiation". Biology Letters. 19 (11). 20230343. doi:10.1098/rsbl.2023.0343. PMC 10618854. PMID 37909055.
  327. ^ Pandolfi, L. (2023). "Reassessing the phylogeny of Quaternary Eurasian Rhinocerotidae". Journal of Quaternary Science. 38 (3): 291–294. Bibcode:2023JQS....38..291P. doi:10.1002/jqs.3496. hdl:11563/163194. S2CID 256167036.
  328. ^ Bronnert, C.; Métais, G. (2023). "Early Eocene hippomorph perissodactyls (Mammalia) from the Paris Basin". Geodiversitas. 45 (9): 277–326. doi:10.5252/geodiversitas2023v45a9. S2CID 259166126.
  329. ^ Sanisidro, O.; Mihlbachler, M. C.; Cantalapiedra, J. L. (2023). "A macroevolutionary pathway to megaherbivory". Science. 380 (6645): 616–618. Bibcode:2023Sci...380..616S. doi:10.1126/science.ade1833. PMID 37167399. S2CID 258618428.
  330. ^ Niknahad, M.; Vaziri, M. R.; Lotfabad Arab, A.; Rivals, F. (2023). "Dietary traits of late Miocene hipparions from Maragheh revealed through dental wear". Rivista Italiana di Paleontologia e Stratigrafia. 129 (2): 361–371. doi:10.54103/2039-4942/19394. S2CID 259612485.
  331. ^ Sankhyan, A. R.; Abbas, S. G.; Khan, M. A.; Babar, M. A.; Yasin, A. (2023). "Diversity of hipparionines (Perissodactyla: Equidae) from the late Miocene–Pliocene Siwalik deposits at Haritalyangar, India". Annales de Paléontologie. 109 (2). 102602. Bibcode:2023AnPal.10902602S. doi:10.1016/j.annpal.2023.102602. S2CID 259008526.
  332. ^ Vincelette, A. R.; Renders, E.; Scott, K. M.; Falkingham, P. L.; Janis, C. M. (2023). "Hipparion tracks and horses' toes: the evolution of the equid single hoof". Royal Society Open Science. 10 (6). 230358. Bibcode:2023RSOS...1030358V. doi:10.1098/rsos.230358. PMC 10282582. PMID 37351494.
  333. ^ Cirilli, O.; Pandolfi, L.; Alba, D. M.; Madurell-Malapeira, J.; Bukhsianidze, M.; Kordos, L.; Lordkipanidze, D.; Rook, L.; Bernor, R. L. (2023). "The last Plio-Pleistocene hipparions of Western Eurasia. A review with remarks on their taxonomy, paleobiogeography and evolution". Quaternary Science Reviews. 306. 107976. Bibcode:2023QSRv..30607976C. doi:10.1016/j.quascirev.2023.107976. S2CID 257594449.
  334. ^ Singh, N.; Jukar, A. M.; Rana, R. S.; Patel, R. (2023). "The earliest occurrence of Equus in South Asia". Journal of Vertebrate Paleontology. 42 (6). e2227236. doi:10.1080/02724634.2023.2227236. S2CID 260305841.
  335. ^ Cirilli, O.; Saarinen, J.; Bernor, R. L. (2023). "Lost in the collections. A critical re-appraisal on Equus major provides a new perspective on the paleobiogeography of the Plio-Pleistocene European equids and on the Equus Datum". Quaternary Science Reviews. 323. 108428. doi:10.1016/j.quascirev.2023.108428. S2CID 265448960.
  336. ^ Fernández, M.; Zimicz, A. N.; Bond, M.; Chornogubsky, L.; Muñoz, N. A.; Fernicola, J. C. (2023). "First Pyrotheria (Mammalia, Meridiungulata) from the Quebrada de Los Colorados Formation (middle Eocene–early Oligocene) at Los Cardones National Park, northwestern Argentina". Journal of Mammalian Evolution. 30 (2): 461–474. doi:10.1007/s10914-023-09649-5. S2CID 256813940.
  337. ^ Lopatin, A. V. (2023). "A New Species of Hapalodectes (Hapalodectidae, Mesonychia) from the Paleocene of Mongolia". Doklady Biological Sciences. 513 (1): 361–367. doi:10.1134/S0012496623700709. PMC 10811070. PMID 37770753. S2CID 263226517.
  338. ^ Averianov, Alexander; Obraztsova, Ekaterina; Danilov, Igor; Jin, Jian-Hua (2023). "A new hypercarnivorous hyaenodont from the Eocene of South China". Frontiers in Ecology and Evolution. 11. doi:10.3389/fevo.2023.1076819. ISSN 2296-701X.
  339. ^ Püschel, Hans P.; Alarcón-Muñoz, Jhonatan; Soto-Acuña, Sergio; Ugalde, Raúl; Shelley, Sarah L.; Brusatte, Stephen L. (2023-02-25). "Anatomy and phylogeny of a new small macraucheniid (Mammalia: Litopterna) from the Bahía Inglesa Formation (late Miocene), Atacama Region, Northern Chile". Journal of Mammalian Evolution. 30 (2): 415–460. doi:10.1007/s10914-022-09646-0. ISSN 1573-7055.
  340. ^ Solórzano, A.; Encinas, A.; Kramarz, A.; Carrasco, G.; Núñez-Flores, M.; Bobe, R. (2023). "A new pachyrukhine (Notoungulata: Typotheria) from the late Early Miocene of south-central Chile". Historical Biology: An International Journal of Paleobiology. 36 (7): 1368–1382. doi:10.1080/08912963.2023.2214568. S2CID 258902617.
  341. ^ Ferro, A.; García-López, D. A.; Saade, L. S.; Alonso-Muruaga, P. J.; Scanferla, A. (2023). "A new 'archaeohyracid' (Notoungulata, Typotheria) from the Eocene of north-western Argentina: anatomy, phylogenetic relationships and evolutionary implications". Journal of Systematic Palaeontology. 21 (1). 2214565. Bibcode:2023JSPal..2114565F. doi:10.1080/14772019.2023.2214565. S2CID 259445927.
  342. ^ Salesa, M. J.; Siliceo, G.; Antón, M.; Martínez, I.; Ortega, F. (2023). "New data on the mammalian fauna from the late middle Eocene (MP 15–16) of Mazaterón (Soria, Spain): The youngest presence of the genus Prodissopsalis (Hyaenodonta, Hyaenodontidae) in Europe". The Anatomical Record. doi:10.1002/ar.25223. hdl:10261/309311. PMID 37060198. S2CID 258153703.
  343. ^ Shockey, B. J.; White, E.; Anaya, F.; McGrath, A. (2023). "A new proterotheriid (Mammalia, Litopterna) from the Salla Beds of Bolivia (upper Oligocene): phylogeny and litoptern patellar pit knee locks". Journal of Vertebrate Paleontology. 42 (2). e2162409. doi:10.1080/02724634.2022.2162409. S2CID 256355550.
  344. ^ Carrillo, J. D.; Suarez, C.; Benites-Palomino, A. M.; Vanegas, A.; Link, A.; Rincón, A. F.; Luque, J.; Cooke, S. B.; Tallman, M.; Billet, G. (2023). "New remains of Neotropical bunodont litopterns and the systematics of Megadolodinae (Mammalia: Litopterna)". Geodiversitas. 45 (15): 409–447. doi:10.5252/geodiversitas2023v45a15. S2CID 261638835.
  345. ^ Blanco, R. E.; Yorio, L.; Montenegro, F. (2023). "Reconstruction of the cervical skeleton posture of the recently-extinct litoptern mammal Macrauchenia patachonica Owen, 1838". Palæovertebrata. 46 (1). e1. doi:10.18563/pv.46.1.e1. S2CID 258882022.
  346. ^ Püschel, H. P.; Martinelli, A. G. (2023). "More than 100 years of a mistake: on the anatomy of the atlas of the enigmatic Macrauchenia patachonica". Swiss Journal of Palaeontology. 142 (1). 16. Bibcode:2023SwJP..142...16P. doi:10.1186/s13358-023-00279-1.
  347. ^ Nelson, A.; Engelman, R. K.; Croft, D. A. (2023). "How to weigh a fossil mammal? South American notoungulates as a case study for estimating body mass in extinct clades". Journal of Mammalian Evolution. 30 (3): 773–809. doi:10.1007/s10914-023-09669-1. S2CID 259866522.
  348. ^ Vera, B.; Mones, Á. (2023). "The status of Peripantostylops and Othnielmarshia (Mammalia: Notoungulata: Henricosborniidae) from the early-middle Eocene of Patagonia (Argentina)". Historical Biology: An International Journal of Paleobiology. 36 (2): 431–447. doi:10.1080/08912963.2023.2165919. S2CID 256181218.
  349. ^ Fernández, M.; Fernicola, J. C.; Cerdeño, E. (2023). "Systematic revision of the species of Protypotherium (Notoungulata: Interatheriidae) from the Santa Cruz Formation (Early–Middle Miocene), Argentinian Patagonia: a new phylogenetic hypothesis for the Interatheriidae". Zoological Journal of the Linnean Society. 199 (2): 417–444. doi:10.1093/zoolinnean/zlad043.
  350. ^ Fernández, M.; Fernicola, J. C.; Cerdeño, E. (2023). "Systematic revision of pre- and post-Santacrucian species of Protypotherium (Interatheriidae, Notoungulata)". Ameghiniana. 60 (6): 540–559. doi:10.5710/AMGH.14.07.2023.3556. S2CID 259927455.
  351. ^ Fernández, M.; Fernicola, J. C.; Cerdeño, E. (2023). "Systematic revision of Interatherium and Icochilus (Interatheriidae, Notoungulata) from the Santa Cruz Formation (early to middle Miocene), Santa Cruz Province, Argentina". Ameghiniana. 60 (3): 236–258. doi:10.5710/AMGH.12.01.2023.3541. S2CID 255893070.
  352. ^ Armella, M. A.; Deforel, F. (2023). "What else is dentition telling us? A new specimen-level phylogeny of Mesotheriidae (Mammalia, Notoungulata)". Cladistics. 39 (6): 571–593. doi:10.1111/cla.12554. PMID 37490279. S2CID 260132745.
  353. ^ Campos-Medina, J.; Montoya-Sanhueza, G.; Moreno, K.; Bostelmann Torrealba, E.; García, M. (2023). "Paleohistology of Caraguatypotherium munozi (Mammalia, Notoungulata, Mesotheriidae) from the early late Miocene of northern Chile: A preliminary ontogenetic approach". PLOS ONE. 18 (3). e0273127. Bibcode:2023PLoSO..1873127C. doi:10.1371/journal.pone.0273127. PMC 10019713. PMID 36928884.
  354. ^ Fernández-Monescillo, M.; Antoine, P.-O.; Croft, D. A.; Pujos, F. (2023). "Intraspecific craniomandibular and dental analysis of Pseudotypotherium exiguum (Mesotheriidae, Notoungulata) from Monte Hermoso, late Neogene, Buenos Aires Province, Argentina". Journal of Vertebrate Paleontology. 42 (6). e2184269. doi:10.1080/02724634.2023.2184269. S2CID 259665817.
  355. ^ Seoane, F. D.; Cerdeño, E.; Gaetano, L. C. (2023). "Reassessment of Tegehotherium burmeisteri Ameghino 1903–1904 (Notoungulata, Hegetotheriidae) and a new phylogenetic analysis of Hegetotheriidae". Journal of Vertebrate Paleontology. 43 (2). e2258172. doi:10.1080/02724634.2023.2258172. S2CID 266965032.
  356. ^ Carrillo, J. D.; Püschel, H. P. (2023). "Pleistocene South American native ungulates (Notoungulata and Litopterna) of the historical Roth collections in Switzerland, from the Pampean Region of Argentina". Swiss Journal of Palaeontology. 142 (1). 28. Bibcode:2023SwJP..142...28C. doi:10.1186/s13358-023-00291-5. PMC 10558389. PMID 37810207.
  357. ^ Vera, B.; Reguero, M. A. (2023). "The Eocene SANUs from the Chubut river valley (Cerro Pan de Azúcar and Bryn Gwyn, Chubut, Argentina)". Journal of South American Earth Sciences. 132. 104679. Bibcode:2023JSAES.13204679V. doi:10.1016/j.jsames.2023.104679. S2CID 264906274.
  358. ^ Matsui, K.; Pyenson, N. D. (2023). "New evidence for the antiquity of Desmostylus (Desmostylia) from the Skooner Gulch Formation of California". Royal Society Open Science. 10 (6). 221648. Bibcode:2023RSOS...1021648M. doi:10.1098/rsos.221648. PMC 10264998. PMID 37325600.
  359. ^ Bertrand, O. C.; Jiménez Lao, M.; Shelley, S. L.; Wible, J. R.; Williamson, T. E.; Meng, J.; Brusatte, S. L. (2023). "The virtual brain endocast of Trogosus (Mammalia, Tillodontia) and its relevance in understanding the extinction of archaic placental mammals" (PDF). Journal of Anatomy. 244 (1): 1–21. doi:10.1111/joa.13951. PMC 10734658. PMID 37720992. S2CID 262047180.
  360. ^ Solé, F.; Fournier, M.; Ladevèze, S.; Le Verger, K.; Godinot, M.; Laurent, Y.; Smith, T. (2023). "New postcranial elements of mesonychid mammals from the Ypresian of France: New hypotheses for the radiation and evolution of the mesonychids in Europe". Journal of Mammalian Evolution. 30 (2): 371–401. doi:10.1007/s10914-023-09651-x. S2CID 258231833.
  361. ^ Kort, A. E.; Jones, K. E. (2023). "Function of revolute zygapophyses in the lumbar vertebrae of early placental mammals". The Anatomical Record. 307 (5): 1918–1929. doi:10.1002/ar.25323. PMID 37712919. S2CID 261884759.
  362. ^ Salas-Gismondi, R.; Ochoa, D.; Gamarra, J.; Pujos, F.; Foster, D. A.; Tejada, J. V. (2023). "Pliocene pre-GABI herbivorous mammals from Espinar, Peruvian Andean Plateau". Journal of Vertebrate Paleontology. 43 (1). e2237079. doi:10.1080/02724634.2023.2237079. S2CID 261413965.
  363. ^ Quiñones, S. I.; Cuadrell, F.; de los Reyes, M.; Luna, C. A.; Poiré, D. G.; Zurita, A. E. (2023). "A new species of Plohophorus Ameghino (Cingulata, Glyptodontidae) from the latest Pliocene–earliest Pleistocene of the Pampean Region (Argentina): the last survivor of a Neogene lineage". Journal of Systematic Palaeontology. 21 (1). 2246963. Bibcode:2023JSPal..2146963Q. doi:10.1080/14772019.2023.2246963. S2CID 262203026.
  364. ^ Christen, Z. M.; Sánchez-Villagra, M. R.; Le Verger, K. (2023). "Cranial and endocranial comparative anatomy of the Pleistocene glyptodonts from the Santiago Roth Collection". Swiss Journal of Palaeontology. 142 (1). 14. Bibcode:2023SwJP..142...14C. doi:10.1186/s13358-023-00280-8.
  365. ^ Troyelli, A.; Cassini, G. H.; Tirao, G.; Boscaini, A.; Fernicola, J. C. (2023). "Endocranial cast anatomy of the Early Miocene glyptodont Propalaehoplophorus australis (Mammalia, Xenarthra, Cingulata) and its evolutionary implications". Journal of Mammalian Evolution. 30 (4): 907–922. doi:10.1007/s10914-023-09689-x. S2CID 265124217.
  366. ^ Cuadrelli, F.; Escamilla, J.; Zurita, A.; Gillette, D. D.; Dávila, L. S. (2023). "Glyptotherium cylindricum (Cingulata, Glyptodontidae) from the Late Pleistocene of Guatemala: the most complete record of Glyptodontinae from Central America". Alcheringa: An Australasian Journal of Palaeontology. 47 (3): 336–347. Bibcode:2023Alch...47..336C. doi:10.1080/03115518.2023.2242440. S2CID 261137459.
  367. ^ Barasoain, D.; Croft, D. A.; Zurita, A. E.; Contreras, V. H.; Tomassini, R. L. (2023). "The last horned armadillos: phylogeny and decline of Peltephilidae (Xenarthra, Cingulata)". Papers in Palaeontology. 9 (4). e1514. Bibcode:2023PPal....9E1514B. doi:10.1002/spp2.1514. S2CID 259890949.
  368. ^ Brandoni, D.; Barasoain, D.; González Ruiz, L. R. (2023). "Late Miocene Dasypodidae Gray, 1821 (Xenarthra, Cingulata) from the Toro Negro Formation (Central Andes, Argentina): diversity and chronological and biogeographical implications". Comptes Rendus Palevol. 22 (1): 1–16. doi:10.5852/cr-palevol2023v22a1. hdl:11336/225379. S2CID 256175068.
  369. ^ Salgado-Ahumada, J. S.; Ercoli, M. D.; Álvarez, A.; Castro, M. C.; Ciancio, M. R. (2023). "Geometric morphometrics as a tool to identify Dasypodini osteoderms: Implications for the oldest records of Dasypus". Journal of Mammalian Evolution. 30 (3): 597–614. doi:10.1007/s10914-023-09671-7. S2CID 260229756.
  370. ^ Dantas, M. A. T.; Campbell, S. C.; Mcdonald, H. G. (2023). "Paleoecological inferences about the Late Quaternary giant sloths". Journal of Mammalian Evolution. 30 (4): 891–905. doi:10.1007/s10914-023-09681-5. S2CID 261410072.
  371. ^ Santos, A. M. A.; Mcdonald, H. G.; Dantas, M. A. T. (2023). "Inferences of the ecological habits of extinct giant sloths from the Brazilian Intertropical Region". Journal of Quaternary Science. 39 (8): 1168–1174. doi:10.1002/jqs.3534. S2CID 258873849.
  372. ^ Varela, L.; Tambusso, P. S.; Pérez Zerpa, J. M.; McAfee, R. K.; Fariña, R. A. (2023). "3D finite element analysis and geometric morphometrics of sloths (Xenarthra, Folivora) mandibles shows insights on the dietary specializations of fossil taxa". Journal of South American Earth Sciences. 128. 104445. Bibcode:2023JSAES.12804445V. doi:10.1016/j.jsames.2023.104445. S2CID 259583304.
  373. ^ Miño-Boilini, Á. R.; Brandoni, D. (2023). "Nematherium (Xenarthra, Folivora) from the Serravallian of La Venta, Department of Huila, Colombia; chronological and biogeographical implications". Andean Geology. 50 (3): 436–446. doi:10.5027/andgeoV50n3-3656. S2CID 263647419.
  374. ^ Gaudin, T.; Scaife, T.; Toledo, N.; De Iuliis, G. (2023). "Cranial osteology of the basal megatherioid sloth Schismotherium (Mammalia, Xenarthra) and its taxonomic implications". Historical Biology: An International Journal of Paleobiology. 36 (2): 350–368. doi:10.1080/08912963.2022.2162399. S2CID 255655393.
  375. ^ da Costa, J. P.; de Araújo-Júnior, H. I.; Barbosa, F. H. S.; Dantas, M. A. T. (2023). "Record of a juvenile of Ahytherium aureum from the Late Pleistocene of the Brazilian Intertropical Region: radiocarbon dating, isotopic palaeoecology and evidence of predation by a Felidae". Journal of Quaternary Science. 39 (8): 1175–1185. doi:10.1002/jqs.3556. S2CID 260267166.
  376. ^ De Iuliis, A. M.; Bargo, M. S.; Toledo, N.; Tsuji, L.; Vizcaíno, S. F. (2023). "Status of Eucholoeops fronto and E. lafonei (Xenarthra, Folivora, Megalonychidae) in the systematics of the Early Miocene Eucholoeops (Santa Cruz, Argentina)". Ameghiniana. 61 (1): 45–69. doi:10.5710/AMGH.15.12.2023.3578. S2CID 266504690.
  377. ^ Pujos, F.; De Iuliis, G.; Vilaboin Santos, L.; Cartelle, C. (2023). "Description of a fetal skeleton of the extinct sloth Nothrotherium maquinense (Xenarthra, Folivora): Ontogenetic and palaeoecological interpretations". Journal of Mammalian Evolution. 30 (3): 577–595. doi:10.1007/s10914-023-09665-5. S2CID 259892230.
  378. ^ Barbosa, F. H. S.; Alves-Silva, L.; Liparini, A.; Porpino, K. O. (2023). "Reviewing the body size of some extinct Brazilian Quaternary Xenarthrans". Journal of Quaternary Science. 39 (8): 1160–1167. doi:10.1002/jqs.3560. S2CID 261041279.
  379. ^ Meehan, T. J.; Korth, W. W. (2023). "Aenigmictis, a new genus of leptictid (Mammalia, Leptictida) from northwestern Nebraska". Paludicola. 14 (3): 122–129.
  380. ^ Lopatin, A. V.; Averianov, A. O. (2023). "A New Eutherian Mammal from the Upper Cretaceous Bayinshire Formation of Mongolia". Journal of Vertebrate Paleontology. 43 (2). e2281478. doi:10.1080/02724634.2023.2281478. S2CID 266965194.
  381. ^ Gingerich, P. D.; Folie, A.; Smith, T. (2023). "Didelphodus caloris, new species (Mammalia, Cimolesta), from the Wasatchian Wa–0 Fauna of the Paleocene-Eocene Thermal Maximum, Clarks Fork Basin, Wyoming". Contributions from the Museum of Paleontology, University of Michigan. 35 (3): 34–45. doi:10.7302/8678.
  382. ^ Crespo, Vicente D.; Cruzado-Caballero, Penélope; Castillo, Carolina (2023-03-21). "First afrosoricid out of Africa: an example of Pliocene 'tourism' in Europe". Palaeoworld. 32 (3): 367–372. Bibcode:2023Palae..32..367C. doi:10.1016/j.palwor.2023.03.006. ISSN 1871-174X. S2CID 257677785.
  383. ^ Furió, M.; Minwer-Barakat, R.; García-Alix, A. (2024). "No place for Pliocene tourists with Ockham's razor in the pocket: Comment on Crespo et al. (2023)". Palaeoworld. 33 (6): 1727–1734. doi:10.1016/j.palwor.2024.02.002.
  384. ^ Wang, H.; Wang, Y. (2023). "Middle ear innovation in Early Cretaceous eutherian mammals". Nature Communications. 14 (1). 6831. Bibcode:2023NatCo..14.6831W. doi:10.1038/s41467-023-42606-7. PMC 10603157. PMID 37884521.
  385. ^ Ting, S.; Wang, X.; Meng, J. (2023). "Cranial and postcranial morphology of the insectivoran-grade mammals Hsiangolestes and Naranius (Mammalia, Eutheria) with analyses of their phylogenetic relationships". Bulletin of the American Museum of Natural History. 463: 1–127. doi:10.1206/0003-0090.463.1.1. hdl:2246/7326. S2CID 259263254.
  386. ^ Eberle, J. J.; Clemens, W. A.; Erickson, G. M.; Druckenmiller, P. S.; Vahtera, V. (2023). "A new tiny eutherian from the Late Cretaceous of Alaska". Journal of Systematic Palaeontology. 21 (1). 2232359. Bibcode:2023JSPal..2132359E. doi:10.1080/14772019.2023.2232359. S2CID 260668330.
  387. ^ Novacek, M. J.; Hoffman, E. A.; O'leary, M. A. (2023). "First occurrence of the eutherian mammal Asioryctes nemegtensis from the Upper Cretaceous Djadokhta Formation, Gobi Desert, Mongolia, and a revised alpha taxonomy based on the skull and dentition". Journal of Vertebrate Paleontology. 42 (4). e2196320. doi:10.1080/02724634.2023.2196320. S2CID 258470274.
  388. ^ a b c d Fabian, P. R.; Archer, M.; Hand, S. J.; Beck, R. M. D. (2023). "First known extinct feathertail possums (Acrobatidae, Marsupialia): palaeobiodiversity, phylogenetics, palaeoecology and palaeogeography". Alcheringa: An Australasian Journal of Palaeontology. 47 (4): 484–505. Bibcode:2023Alch...47..484F. doi:10.1080/03115518.2023.2242439. S2CID 261264587.
  389. ^ van Zoelen, J. D.; Camens, A. B.; Worthy, T. H.; Prideaux, G. J. (2023). "Description of the Pliocene marsupial Ambulator keanei gen. nov. (Marsupialia: Diprotodontidae) from inland Australia and its locomotory adaptations". Royal Society Open Science. 10 (5). 230211. Bibcode:2023RSOS...1030211V. doi:10.1098/rsos.230211. PMC 10230189. PMID 37266037.
  390. ^ Myers, T.; Crosby, K. (2023). "A new Early–Middle Miocene phalangerid (Marsupialia: Phalangeridae) from the Riversleigh World Heritage Area, Boodjamulla (Lawn Hill) National Park, northwestern Queensland". Alcheringa: An Australasian Journal of Palaeontology. 47 (4): 522–533. Bibcode:2023Alch...47..522M. doi:10.1080/03115518.2023.2185677. S2CID 257793041.
  391. ^ Prideaux, G. J.; Warburton, N. M. (2023). "A review of the late Cenozoic genus Bohra (Diprotodontia: Macropodidae) and the evolution of tree-kangaroos". Zootaxa. 5299 (1): 1–95. doi:10.11646/zootaxa.5299.1.1. PMID 37518576. S2CID 259783864.
  392. ^ a b c Case, J. A. (2023). "Two new species of ektopodontid marsupial from the lower deposits of the Etadunna Formation (latest Oligocene), South Australia and a phylogenetic hypothesis for the Ektopodontidae". Alcheringa: An Australasian Journal of Palaeontology. 47 (4): 431–445. Bibcode:2023Alch...47..431C. doi:10.1080/03115518.2023.2227252. S2CID 260676986.
  393. ^ Crichton, A. I.; Worthy, T. H.; Camens, A. B.; Prideaux, G. J. (2023). "A new ektopodontid possum (Diprotodontia, Ektopodontidae) from the Oligocene of central Australia, and its implications for phalangeroid interrelationships". Journal of Vertebrate Paleontology. 42 (3). e2171299. doi:10.1080/02724634.2023.2171299. S2CID 257180972.
  394. ^ a b Gillespie, A. K. (2023). "Two new marsupial lion taxa (Marsupialia, Thylacoleonidae) from the early and Middle Miocene of Australia". Alcheringa: An Australasian Journal of Palaeontology. 47 (4): 506–521. Bibcode:2023Alch...47..506G. doi:10.1080/03115518.2022.2152096. S2CID 256157821.
  395. ^ a b Chornogubsky, L.; Goin, F. J.; Ciancio, M. R.; Puerta, P.; Krause, M. (2023). "Eocene (Ypresian-Lutetian) mammals from Cerro Pan de Azúcar (Gaiman, Chubut Province, Argentina)". Historical Biology: An International Journal of Paleobiology. 36 (10): 2059–2069. doi:10.1080/08912963.2023.2241054. S2CID 260417274.
  396. ^ Crichton, A. I.; Beck, R. M. D.; Couzens, A. M. C.; Worthy, T. H.; Camens, A. B.; Prideaux, G. J. (2023). "A probable koala from the Oligocene of central Australia provides insights into early diprotodontian evolution". Scientific Reports. 13 (1). 14521. Bibcode:2023NatSR..1314521C. doi:10.1038/s41598-023-41471-0. PMC 10477348. PMID 37666885.
  397. ^ Goin, F. J.; de los Reyes, M. (2023). "A new species of Lutreolina Thomas, 1910 (Marsupialia, Didelphidae) from the Early Pleistocene of the southern Pampas (Buenos Aires Province, Argentina)". Publicación Electrónica de la Asociación Paleontológica Argentina. 23 (1): 193–203. doi:10.5710/PEAPA.24.10.2022.435. S2CID 258754372.
  398. ^ Churchill, T. J.; Archer, M.; Hand, S. J.; Myers, T.; Gillespie, A.; Beck, R. M. D. (2023). "A new diminutive durophagous Miocene dasyuromorphian (Marsupialia, Malleodectidae) from the Riversleigh World Heritage Area, northern Australia". Journal of Vertebrate Paleontology. 42 (3). e2170804. doi:10.1080/02724634.2023.2170804. S2CID 257544594.
  399. ^ Crichton, Arthur I.; Worthy, Trevor H.; Camens, Aaron B.; Yates, Adam M.; Couzens, Aidan M. C.; Prideaux, Gavin J. (2023-03-19). "A new species of Mukupirna (Diprotodontia, Mukupirnidae) from the Oligocene of Central Australia sheds light on basal vombatoid interrelationships". Alcheringa: An Australasian Journal of Palaeontology. 47 (4): 446–474. Bibcode:2023Alch...47..446C. doi:10.1080/03115518.2023.2181397. ISSN 0311-5518. S2CID 257635631.
  400. ^ a b Rangel, C. C.; Carneiro, L. M.; Tejedor, M. F.; Bergqvist, L. P.; Oliveira, É. V. (2023). "A reassessment of Nemolestes (Mammalia, Metatheria): Systematics and evolutionary implications for Sparassodonta". Journal of Mammalian Evolution. 30 (3): 535–559. doi:10.1007/s10914-023-09663-7. S2CID 259808461.
  401. ^ Rangel, C. C.; Carneiro, L. M.; Oliveira, É. V. (2023). "Systematics, dental specializations and paleoecology of Silvenator gen. nov., a small carnivorous metatherian (Mammalia, Sparassodonta) from the Paleogene Itaboraí basin". Journal of South American Earth Sciences. 128. 104461. Bibcode:2023JSAES.12804461R. doi:10.1016/j.jsames.2023.104461. S2CID 259612104.
  402. ^ Cramb, J.; Hocknull, S.; Beck, R. M. D.; Kealy, S.; Price, G. J. (2023). "Urrayira whitei gen. et sp. nov.: a dasyuromorphian (Mammalia: Marsupialia) with incipient zalambdodonty from the Middle Pleistocene of Queensland, Australia". Alcheringa: An Australasian Journal of Palaeontology. 47 (4): 551–561. Bibcode:2023Alch...47..551C. doi:10.1080/03115518.2023.2169351. S2CID 258306593.
  403. ^ Brannick, A. L.; Fulghum, H. Z.; Grossnickle, D. M.; Wilson Mantilla, G. P. (2023). "Dental ecomorphology and macroevolutionary patterns of North American Late Cretaceous metatherians". Palaeontologia Electronica. 26 (3). 26.3.a48. doi:10.26879/1177.
  404. ^ Carneiro, L. M.; Oliveira, É. V. (2022). "Paleogene Metatherians from the Itaboraí Basin: Diversity and Affinities". In N. C. Cáceres; C. R. Dickman (eds.). American and Australasian Marsupials. Springer. pp. 1–56. doi:10.1007/978-3-030-88800-8_5-1. ISBN 978-3-030-88800-8.
  405. ^ Engelman, R. K.; Croft, D. A. (2023). "A seventh carnivorous metatherian taxon (Sparassodonta) from the late Miocene-early Pliocene Santa María group of Catamarca Province, Argentina". Journal of South American Earth Sciences. 129. 104493. Bibcode:2023JSAES.12904493E. doi:10.1016/j.jsames.2023.104493. S2CID 260025751.
  406. ^ Guimarães, B. M. G.; Rangel, C. C.; Carneiro, L. M.; Sedor, F. A.; Oliveira, É. V. (2023). "A large mammalian predator (Metatheria, Sparassodonta, Proborhyaenidae) in the Guabirotuba Formation (Curitiba Basin; middle Eocene)". Journal of South American Earth Sciences. 133. 104717. doi:10.1016/j.jsames.2023.104717. S2CID 265629283.
  407. ^ Suarez, C.; Forasiepi, A. M.; Babot, M. J.; Shinmura, T.; Luque, J.; Vanegas, R. D.; Cadena, E. A.; Goin, F. J. (2023). "A sabre-tooth predator from the Neotropics: Cranial morphology of Anachlysictis gracilis Goin, 1997 (Metatheria, Thylacosmilidae), based on new specimens from La Venta (Middle Miocene, Colombia)". Geodiversitas. 45 (18): 497–572. doi:10.5252/geodiversitas2023v45a18. S2CID 264306526.
  408. ^ Gaillard, C.; MacPhee, R. D. E.; Forasiepi, A. M. (2023). "Seeing through the eyes of the sabertooth Thylacosmilus atrox (Metatheria, Sparassodonta)". Communications Biology. 6 (1). 257. doi:10.1038/s42003-023-04624-5. PMC 10030895. PMID 36944801.
  409. ^ Gônet, J.; Bardin, J.; Girondot, M.; Hutchinson, J. R.; Laurin, M. (2023). "Unravelling the postural diversity of mammals: Contribution of humeral cross-sections to palaeobiological inferences". Journal of Mammalian Evolution. 30 (2): 321–337. doi:10.1007/s10914-023-09652-w. S2CID 256788973. Archived from the original on 2023-02-09. Retrieved 2023-02-09.
  410. ^ Beard, K. C.; Coster, P. M. C.; Ocakoğlu, F.; Licht, A.; Métais, G. (2023). "Dental anatomy, phylogenetic relationships and paleoecology of Orhaniyeia nauta (Metatheria, Anatoliadelphyidae), a Gondwanan component of the insular Eocene mammal fauna of Balkanatolia (north-central Turkey)" (PDF). Journal of Mammalian Evolution. 30 (4): 859–872. doi:10.1007/s10914-023-09680-6. S2CID 261552941.
  411. ^ Goin, F. J.; Vieytes, E. C.; Crespo, V. D.; Oliveira, É. V. (2023). "†Estelestes ensis (Mammalia, Metatheria) from the early Eocene of Baja California (Mexico) as a generalized polydolopimorphian". Journal of Paleontology. 97 (2): 533–538. Bibcode:2023JPal...97..533G. doi:10.1017/jpa.2022.105. S2CID 256148665.
  412. ^ Stutz, N. S.; Hadler, P.; Negri, F. R.; Marivaux, L.; Antoine, P.-O.; Pujos, F.; Jacó, T. R.; Fontoura, E. M.; Kerber, L.; Hsiou, A. S.; Ventura Santos, R.; Alvim, A. M. V.; Ribeiro, A. M. (2023). "New records of marsupials from the Miocene of Western Amazonia, Acre, Brazil". Acta Palaeontologica Polonica. 68 (3): 457–475. doi:10.4202/app.01057.2023. S2CID 264399179.
  413. ^ Chinsamy, A.; Black, K. H.; Hand, S. J.; Archer, M. (2023). "Paleobiological implications of the bone histology of the extinct Australian marsupial Nimbadon lavarackorum". Journal of Paleontology. 97 (3): 722–734. Bibcode:2023JPal...97..722C. doi:10.1017/jpa.2023.22. S2CID 258541826.
  414. ^ DeSantis, L.; Archer, M.; Black, K.; Hand, S.; Korasidis, V. (2023). "Tree-climbing in search of fruit: an ancient arboreal marsupial megafrugivore from the Miocene of Australia". Alcheringa: An Australasian Journal of Palaeontology. 47 (4): 534–542. Bibcode:2023Alch...47..534D. doi:10.1080/03115518.2023.2268680. S2CID 265201158.
  415. ^ Koutamanis, D.; McCurry, M.; Tacail, T.; Dosseto, A. (2023). "Reconstructing Pleistocene Australian herbivore megafauna diet using calcium and strontium isotopes". Royal Society Open Science. 10 (11). 230991. Bibcode:2023RSOS...1030991K. doi:10.1098/rsos.230991. PMC 10663789. PMID 38026016.
  416. ^ Chimento, N. R.; Agnolín, F. L.; Manabe, M.; Tsuihiji, T.; Rich, T. H.; Vickers-Rich, P.; Novas, F. E. (2023). "First monotreme from the Late Cretaceous of South America". Communications Biology. 6 (1). 146. doi:10.1038/s42003-023-04498-7. PMC 9935847. PMID 36797304.
  417. ^ Mao, F.; Li, Z.; Hooker, J. J.; Meng, J. (2023). "A new euharamiyidan, Mirusodens caii (Mammalia: Euharamiyida), from the Jurassic Yanliao Biota and evolution of allotherian mammals". Zoological Journal of the Linnean Society. 199 (3): 832–859. doi:10.1093/zoolinnean/zlad050.
  418. ^ Martin, T. A.; Averianov, A. O.; Schultz, J. A.; Schwermann, A. H. (2023). "A stem therian mammal from the Lower Cretaceous of Germany". Journal of Vertebrate Paleontology. 42 (6). e2224848. doi:10.1080/02724634.2023.2224848. S2CID 260265765.
  419. ^ Averianov, A. O.; Martin, T.; Lopatin, A. V.; Skutschas, P. P.; Vitenko, D. D.; Schellhorn, R.; Kolosov, P. N. (2023). "On the way from Asia to America: eutriconodontan mammals from the Early Cretaceous of Yakutia, Russia". The Science of Nature. 110 (4). 40. Bibcode:2023SciNa.110...40A. doi:10.1007/s00114-023-01868-3. PMID 37530873. S2CID 260358210.
  420. ^ Han, G.; Mallon, J. C.; Lussier, A. J.; Wu, X.-C.; Mitchell, R.; Li, L.-J. (2023). "An extraordinary fossil captures the struggle for existence during the Mesozoic". Scientific Reports. 13 (1). 11221. Bibcode:2023NatSR..1311221H. doi:10.1038/s41598-023-37545-8. PMC 10354204. PMID 37464026.
  421. ^ Hoffmann, S.; Kirk, E. C.; Rowe, T. B.; Cifelli, R. L. (2023). "Petrosal morphology of the Early Cretaceous triconodontid Astroconodon from the Cloverly Formation (Montana, USA)". Journal of Mammalian Evolution. 30 (4): 819–844. doi:10.1007/s10914-023-09673-5. S2CID 260652851.
  422. ^ Krause, D. W.; Hoffmann, S. (2023). "First postcranial remains of the Late Cretaceous gondwanatherian mammal Vintana sertichi". Cretaceous Research. 149. 105577. Bibcode:2023CrRes.14905577K. doi:10.1016/j.cretres.2023.105577. S2CID 258724079.
  423. ^ Won, C. G.; So, K. S.; Jon, S. H. (2023). "The First Known Mesozoic Mammal in the Democratic People's Republic of Korea". Paleontological Journal. 57 (7): 826–832. Bibcode:2023PalJ...57..826W. doi:10.1134/S0031030123070122. S2CID 265500498.
  424. ^ Luo, Z.-X.; Martin, T. (2023). "Mandibular and dental characteristics of the Late Jurassic mammal Henkelotherium guimarotae (Paurodontidae, Dryolestida)". PalZ. 97 (3): 569–619. Bibcode:2023PalZ...97..569L. doi:10.1007/s12542-023-00651-z. S2CID 258023028.
  425. ^ Ercoli, M. D.; Álvarez, A.; Warburton, N. M.; Janis, C. M.; Potapova, E. G.; Herring, S. W.; Cassini, G. H.; Tarquini, J.; Kuznetsov, A. (2023). "Myology of the masticatory apparatus of herbivorous mammals and a novel classification for a better understanding of herbivore diversity". Zoological Journal of the Linnean Society. 198 (4): 1106–1155. doi:10.1093/zoolinnean/zlac102.
  426. ^ Martinez, Q.; Okrouhlík, J.; Šumbera, R.; Wright, M.; Araújo, R.; Braude, S.; Hildebrandt, T. B.; Holtze, S.; Ruf, I.; Fabre, P.-H. (2023). "Mammalian maxilloturbinal evolution does not reflect thermal biology". Nature Communications. 14 (1). 4425. Bibcode:2023NatCo..14.4425M. doi:10.1038/s41467-023-39994-1. PMC 10361988. PMID 37479710.
  427. ^ Claytor, J. R.; Weaver, L. N.; Tobin, T. S.; Wilson Mantilla, G. P. (2023). "New mammalian local faunas from the first ca. 80 ka of the Paleocene in northeastern Montana and a revised model of biotic recovery from the Cretaceous–Paleogene mass extinction". Journal of Vertebrate Paleontology. 42 (6). e2222777. doi:10.1080/02724634.2023.2222777. S2CID 260152635.
  428. ^ Foley, N. M.; Mason, V. C.; Harris, A. J.; Bredemeyer, K. R.; Damas, J.; Lewin, H. A.; Eizirik, E.; Gatesy, J.; Karlsson, E. K.; Lindblad-Toh, K.; Zoonomia Consortium; Springer, M. S.; Murphy, W. J. (2023). "A genomic timescale for placental mammal evolution". Science. 380 (6643). eabl8189. doi:10.1126/science.abl8189. PMC 10233747. PMID 37104581.
  429. ^ Carlisle, E.; Janis, C. M.; Pisani, D.; Donoghue, P. C. J.; Silvestro, D. (2023). "A timescale for placental mammal diversification based on Bayesian modeling of the fossil record". Current Biology. 33 (15): 3073–3082.e3. Bibcode:2023CBio...33E3073C. doi:10.1016/j.cub.2023.06.016. PMID 37379845. S2CID 259279073.
  430. ^ Benevento, G. L.; Benson, R. B. J.; Close, R. A.; Butler, R. J. (2023). "Early Cenozoic increases in mammal diversity cannot be explained solely by expansion into larger body sizes". Palaeontology. 66 (3). e12653. Bibcode:2023Palgy..6612653B. doi:10.1111/pala.12653. S2CID 259253090.
  431. ^ Friscia, A. R.; Borths, M. R.; Croft, D. A. (2023). "Comparing the Evolution of the Extinct, Endemic Carnivorous Mammals of South America and Africa (Sparassodonts and Hyaenodonts)". In Isaac Casanovas-Vilar; Lars W. van den Hoek Ostende; Christine M. Janis; Juha Saarinen (eds.). Evolution of Cenozoic Land Mammal Faunas and Ecosystems. Vertebrate Paleobiology and Paleoanthropology. Springer. pp. 59–77. doi:10.1007/978-3-031-17491-9_5. ISBN 978-3-031-17490-2.
  432. ^ Wilson, O. E.; Parker, A. K. (2023). "Low predator competition indicates occupation of macro-predatory niches by giant Miocene reptiles at La Venta, Colombia". Palaeogeography, Palaeoclimatology, Palaeoecology. 632. 111843. Bibcode:2023PPP...63211843W. doi:10.1016/j.palaeo.2023.111843. S2CID 264112406.
  433. ^ Hardy, F. C.; Badgley, C. (2023). "Mammalian faunal change of the Miocene Dove Spring Formation, Mojave region, southern California, USA, in relation to tectonic history". GSA Bulletin. 136 (7–8): 2646–2660. doi:10.1130/B37082.1. S2CID 265192708.
  434. ^ Ruiz-Ramoni, D.; Romano, C. O.; Tarquini, S. D.; Forasiepi, A. M.; García Massini, J. L.; Barbeau, D. L.; Cruz, L. E.; Barasoain, D.; Cerdeño, E.; Madozzo Jaén, M. C.; Combina, A. M.; Asurmendi, E.; Pujana, R. R.; Torres Carro, V.; Ortiz, P. E.; Schmidt, G. I.; Krapovickas, V.; Fernicola, J. C.; Marenssi, S. A.; Prevosti, F. J. (2023). "Mammalian diversity and age of the Salicas formation (Late Miocene–early Pleistocene), Northwestern Argentina: State of knowledge and new contributions". Journal of South American Earth Sciences. 131. 104605. Bibcode:2023JSAES.13104605R. doi:10.1016/j.jsames.2023.104605. S2CID 263197134.
  435. ^ Lauer, D. A.; Lawing, A. M.; Short, R. A.; Manthi, F. K.; Müller, J.; Head, J. J.; McGuire, J. L. (2023). "Disruption of trait-environment relationships in African megafauna occurred in the middle Pleistocene". Nature Communications. 14 (1). 4016. Bibcode:2023NatCo..14.4016L. doi:10.1038/s41467-023-39480-8. PMC 10354096. PMID 37463920.
  436. ^ Bibi, F.; Cantalapiedra, J. L. (2023). "Plio-Pleistocene African megaherbivore losses associated with community biomass restructuring". Science. 380 (6649): 1076–1080. Bibcode:2023Sci...380.1076B. doi:10.1126/science.add8366. PMID 37289876. S2CID 259112374.
  437. ^ Britton, K.; Jimenez, E.-L.; Le Corre, M.; Renou, S.; Rendu, W.; Richards, M. P.; Hublin, J.-J.; Soressi, M. (2023). "Multi-isotope analysis of bone collagen of Late Pleistocene ungulates reveals niche partitioning and behavioural plasticity of reindeer during MIS 3". Scientific Reports. 13 (1). 15722. Bibcode:2023NatSR..1315722B. doi:10.1038/s41598-023-42199-7. PMC 10514192. PMID 37735582.
  438. ^ Varela, L.; Clavijo, L.; Tambusso, P. S.; Fariña, R. A. (2023). "A window into a late Pleistocene megafauna community: Stable isotopes show niche partitioning among herbivorous taxa at the Arroyo del Vizcaíno site (Uruguay)". Quaternary Science Reviews. 317. 108286. Bibcode:2023QSRv..31708286V. doi:10.1016/j.quascirev.2023.108286. S2CID 261443259.
  439. ^ Carrasco, T. S.; Ribeiro, A. M.; Mota, G. S.; Buchmann, F. S. (2023). "Paleobiology of Pleistocene large land mammals from the Brazilian Pampa". Quaternary International. 676: 63–72. Bibcode:2023QuInt.676...63C. doi:10.1016/j.quaint.2023.10.013. S2CID 265058659.
  440. ^ O'Keefe, F. R.; Dunn, R. E.; Weitzel, E. M.; Waters, M. R.; Martinez, L. N.; Binder, W. J.; Southon, J. R.; Cohen, J. E.; Meachen, J. A.; DeSantis, L. R. G.; Kirby, M. E.; Ghezzo, E.; Coltrain, J. B.; Fuller, B. T.; Farrell, A. B.; Takeuchi, G. T.; MacDonald, G.; Davis, E. B.; Lindsey, E. L. (2023). "Pre–Younger Dryas megafaunal extirpation at Rancho La Brea linked to fire-driven state shift". Science. 381 (6659). eabo3594. doi:10.1126/science.abo3594. PMID 37590347. S2CID 260956289.
  441. ^ Bergman, J.; Pedersen, R. Ø.; Lundgren, E. J.; Lemoine, R. T.; Monsarrat, S.; Pearce, E. A.; Schierup, M. H.; Svenning, J.-C. (2023). "Worldwide Late Pleistocene and Early Holocene population declines in extant megafauna are associated with Homo sapiens expansion rather than climate change". Nature Communications. 14 (1). 7679. Bibcode:2023NatCo..14.7679B. doi:10.1038/s41467-023-43426-5. PMC 10667484. PMID 37996436.
  442. ^ Seeber, P. A.; Batke, L.; Dvornikov, Y.; Schmidt, A.; Wang, Y.; Stoof-Leichsenring, K. R.; Moon, K. L.; Shapiro, B.; Epp, L. S. (2023). "Mitochondrial genomes of Pleistocene megafauna retrieved from recent sediment layers of two Siberian lakes". eLife. 12. doi:10.7554/eLife.89992. PMC 10942779. PMID 38488477.