Jump to content

英文维基 | 中文维基 | 日文维基 | 草榴社区

PTPRN2

From Wikipedia, the free encyclopedia
PTPRN2
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesPTPRN2, IA-2beta, IAR, ICAAR, PTPRP, R-PTP-N2, protein tyrosine phosphatase, receptor type N2, protein tyrosine phosphatase receptor type N2
External IDsOMIM: 601698; MGI: 107418; HomoloGene: 2134; GeneCards: PTPRN2; OMA:PTPRN2 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001308267
NM_001308268
NM_002847
NM_130842
NM_130843

NM_011215

RefSeq (protein)

NP_001295196
NP_001295197
NP_002838
NP_570857
NP_570858

NP_035345

Location (UCSC)Chr 7: 157.54 – 158.59 MbChr 12: 116.45 – 117.24 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Receptor-type tyrosine-protein phosphatase N2 (R-PTP-N2) also known as islet cell autoantigen-related protein (ICAAR) and phogrin is an enzyme that in humans is encoded by the PTPRN2 gene.[5][6][7] PTPRN and PTPRN2 (this gene) are both found to be major autoantigens associated with insulin-dependent diabetes mellitus.[7]

Function

[edit]

Due to a close similarity in the gene sequences, the protein encoded by this gene has traditionally been considered a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. However, recent research has shown that the PTPRN2 mouse homolog, known as phogrin, dephosphorylates the lipid phosphatidylinositol rather than tyrosine. Specifically, phogrin was shown to act upon phosphatidylinositol 3-phosphate and Phosphatidylinositol 4,5-diphosphate, whereas it has never been observed acting upon tyrosine.[8] PTPRN2 should, therefore, be more accurately considered a PIPase rather than a PTPase. Phosphorylated forms of phosphatidylinositol (PI) are called phosphoinositides and play important roles in lipid signaling, cell signaling and membrane trafficking.

The protein produced by PTPRN2 possesses an extracellular region, a single transmembrane region, and a single intracellular catalytic domain, and thus represents a receptor-type PTP. The catalytic domain of this PTP is most closely related to PTPRN, also known as IA-2.[7]

Gene

[edit]

Three alternatively spliced transcript variants of this gene, which encode distinct proteins, have been reported.[7]

Interactions

[edit]

PTPRN2 has been shown to interact with: CKAP5,[9] SPTBN4,[10] and UBQLN4.[11]

Clinical significance

[edit]

R-PTP-N2 functions as an autoantigen in diabetes mellitus type 1.[12][13]

References

[edit]
  1. ^ a b c ENSG00000282185 GRCh38: Ensembl release 89: ENSG00000155093, ENSG00000282185Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000056553Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Smith PD, Barker KT, Wang J, Lu YJ, Shipley J, Crompton MR (Jan 1997). "ICAAR, a novel member of a new family of transmembrane, tyrosine phosphatase-like proteins". Biochem Biophys Res Commun. 229 (2): 402–11. doi:10.1006/bbrc.1996.1817. PMID 8954911.
  6. ^ Li Q, Borovitskaya AE, DeSilva MG, Wasserfall C, Maclaren NK, Notkins AL, Lan MS (Sep 1997). "Autoantigens in insulin-dependent diabetes mellitus: molecular cloning and characterization of human IA-2 beta". Proc Assoc Am Physicians. 109 (4): 429–39. PMID 9220540.
  7. ^ a b c d "Entrez Gene: PTPRN2 protein tyrosine phosphatase, receptor type, N polypeptide 2".
  8. ^ Caromile LA, Oganesian A, Coats SA, Seifert RA, Bowen-Pope DF (April 2010). "The neurosecretory vesicle protein phogrin functions as a phosphatidylinositol phosphatase to regulate insulin secretion". J. Biol. Chem. 285 (14): 10487–96. doi:10.1074/jbc.M109.066563. PMC 2856256. PMID 20097759.
  9. ^ Nakayama M, Kikuno R, Ohara O (November 2002). "Protein-protein interactions between large proteins: two-hybrid screening using a functionally classified library composed of long cDNAs". Genome Res. 12 (11): 1773–84. doi:10.1101/gr.406902. PMC 187542. PMID 12421765.
  10. ^ Berghs S, Aggujaro D, Dirkx R, Maksimova E, Stabach P, Hermel JM, Zhang JP, Philbrick W, Slepnev V, Ort T, Solimena M (November 2000). "betaIV spectrin, a new spectrin localized at axon initial segments and nodes of ranvier in the central and peripheral nervous system". J. Cell Biol. 151 (5): 985–1002. doi:10.1083/jcb.151.5.985. PMC 2174349. PMID 11086001.
  11. ^ Lim J, Hao T, Shaw C, Patel AJ, Szabó G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, Barabási AL, Vidal M, Zoghbi HY (May 2006). "A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration". Cell. 125 (4): 801–14. doi:10.1016/j.cell.2006.03.032. PMID 16713569. S2CID 13709685.
  12. ^ Lu J, Li Q, Xie H, Chen ZJ, Borovitskaya AE, Maclaren NK, Notkins AL, Lan MS (March 1996). "Identification of a second transmembrane protein tyrosine phosphatase, IA-2beta, as an autoantigen in insulin-dependent diabetes mellitus: precursor of the 37-kDa tryptic fragment". Proc. Natl. Acad. Sci. U.S.A. 93 (6): 2307–11. Bibcode:1996PNAS...93.2307L. doi:10.1073/pnas.93.6.2307. PMC 39791. PMID 8637868.
  13. ^ Pietropaolo M, Hutton JC, Eisenbarth GS (February 1997). "Protein tyrosine phosphatase-like proteins: link with IDDM". Diabetes Care. 20 (2): 208–14. doi:10.2337/diacare.20.2.208. PMID 9118776. S2CID 5392803.

Further reading

[edit]