Jump to content

英文维基 | 中文维基 | 日文维基 | 草榴社区

Solar eclipse of August 3, 2092

From Wikipedia, the free encyclopedia
Solar eclipse of August 3, 2092
Map
Type of eclipse
NatureAnnular
Gamma−0.2044
Magnitude0.9794
Maximum eclipse
Duration151 s (2 min 31 s)
Coordinates5°36′N 30°18′E / 5.6°N 30.3°E / 5.6; 30.3
Max. width of band75 km (47 mi)
Times (UTC)
Greatest eclipse9:59:33
References
Saros137 (40 of 70)
Catalog # (SE5000)9715

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, August 3, 2092,[1] with a magnitude of 0.9794. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide. Occurring about 5.3 days after apogee (on July 29, 2092, at 2:00 UTC), the Moon's apparent diameter will be smaller.[2]

The path of annularity will be visible from parts of Liberia, Côte d'Ivoire, Ghana, Togo, Benin, Nigeria, Cameroon, Chad, the Central African Republic, South Sudan, Uganda, Kenya, Somalia, and the Seychelles. A partial solar eclipse will also be visible for parts of eastern Brazil, Africa, Southern Europe, the Middle East, and South Asia.

Eclipse details

[edit]

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]

August 3, 2092 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2092 August 03 at 07:03:23.5 UTC
First Umbral External Contact 2092 August 03 at 08:06:36.3 UTC
First Central Line 2092 August 03 at 08:07:48.9 UTC
First Umbral Internal Contact 2092 August 03 at 08:09:01.6 UTC
First Penumbral Internal Contact 2092 August 03 at 09:14:39.6 UTC
Greatest Duration 2092 August 03 at 09:18:10.6 UTC
Ecliptic Conjunction 2092 August 03 at 09:57:12.6 UTC
Greatest Eclipse 2092 August 03 at 09:59:32.8 UTC
Equatorial Conjunction 2092 August 03 at 10:03:51.7 UTC
Last Penumbral Internal Contact 2092 August 03 at 10:44:20.1 UTC
Last Umbral Internal Contact 2092 August 03 at 11:50:02.9 UTC
Last Central Line 2092 August 03 at 11:51:12.9 UTC
Last Umbral External Contact 2092 August 03 at 11:52:22.8 UTC
Last Penumbral External Contact 2092 August 03 at 12:55:34.2 UTC
August 3, 2092 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.97942
Eclipse Obscuration 0.95927
Gamma −0.20443
Sun Right Ascension 08h58m14.3s
Sun Declination +17°09'21.7"
Sun Semi-Diameter 15'45.7"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 08h58m05.6s
Moon Declination +16°58'10.4"
Moon Semi-Diameter 15'12.2"
Moon Equatorial Horizontal Parallax 0°55'47.9"
ΔT 116.5 s

Eclipse season

[edit]

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of July–August 2092
July 19
Descending node (full moon)
August 3
Ascending node (new moon)
August 17
Descending node (full moon)
Penumbral lunar eclipse
Lunar Saros 111
Annular solar eclipse
Solar Saros 137
Penumbral lunar eclipse
Lunar Saros 149
[edit]

Eclipses in 2092

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Solar Saros 137

[edit]

Inex

[edit]

Triad

[edit]

Solar eclipses of 2091–2094

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

The partial solar eclipses on June 13, 2094 and December 7, 2094 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2091 to 2094
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
122 February 18, 2091

Partial
1.1779 127 August 15, 2091

Total
−0.949
132 February 7, 2092

Annular
0.4322 137 August 3, 2092

Annular
−0.2044
142 January 27, 2093

Total
−0.2737 147 July 23, 2093

Annular
0.5717
152 January 16, 2094

Total
−0.9333 157 July 12, 2094

Partial
1.3150

Saros 137

[edit]

This eclipse is a part of Saros series 137, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on May 25, 1389. It contains total eclipses from August 20, 1533 through December 6, 1695; the first set of hybrid eclipses from December 17, 1713 through February 11, 1804; the first set of annular eclipses from February 21, 1822 through March 25, 1876; the second set of hybrid eclipses from April 6, 1894 through April 28, 1930; and the second set of annular eclipses from May 9, 1948 through April 13, 2507. The series ends at member 70 as a partial eclipse on June 28, 2633. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 11 at 2 minutes, 55 seconds on September 10, 1569, and the longest duration of annularity will be produced by member 59 at 7 minutes, 5 seconds on February 28, 2435. All eclipses in this series occur at the Moon’s ascending node of orbit.[5]

Series members 24–46 occur between 1801 and 2200:
24 25 26

February 11, 1804

February 21, 1822

March 4, 1840
27 28 29

March 15, 1858

March 25, 1876

April 6, 1894
30 31 32

April 17, 1912

April 28, 1930

May 9, 1948
33 34 35

May 20, 1966

May 30, 1984

June 10, 2002
36 37 38

June 21, 2020

July 2, 2038

July 12, 2056
39 40 41

July 24, 2074

August 3, 2092

August 15, 2110
42 43 44

August 25, 2128

September 6, 2146

September 16, 2164
45 46

September 27, 2182

October 9, 2200

Metonic series

[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

23 eclipse events between August 3, 2054 and October 16, 2145
August 3–4 May 22–24 March 10–11 December 27–29 October 14–16
117 119 121 123 125

August 3, 2054

May 22, 2058

March 11, 2062

December 27, 2065

October 15, 2069
127 129 131 133 135

August 3, 2073

May 22, 2077

March 10, 2081

December 27, 2084

October 14, 2088
137 139 141 143 145

August 3, 2092

May 22, 2096

March 10, 2100

December 29, 2103

October 16, 2107
147 149 151 153 155

August 4, 2111

May 24, 2115

March 11, 2119

December 28, 2122

October 16, 2126
157 159 161 163 165

August 4, 2130

May 23, 2134

October 16, 2145

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

October 19, 1808
(Saros 111)

September 19, 1819
(Saros 112)

August 18, 1830
(Saros 113)

July 18, 1841
(Saros 114)

June 17, 1852
(Saros 115)

May 17, 1863
(Saros 116)

April 16, 1874
(Saros 117)

March 16, 1885
(Saros 118)

February 13, 1896
(Saros 119)

January 14, 1907
(Saros 120)

December 14, 1917
(Saros 121)

November 12, 1928
(Saros 122)

October 12, 1939
(Saros 123)

September 12, 1950
(Saros 124)

August 11, 1961
(Saros 125)

July 10, 1972
(Saros 126)

June 11, 1983
(Saros 127)

May 10, 1994
(Saros 128)

April 8, 2005
(Saros 129)

March 9, 2016
(Saros 130)

February 6, 2027
(Saros 131)

January 5, 2038
(Saros 132)

December 5, 2048
(Saros 133)

November 5, 2059
(Saros 134)

October 4, 2070
(Saros 135)

September 3, 2081
(Saros 136)

August 3, 2092
(Saros 137)

July 4, 2103
(Saros 138)

June 3, 2114
(Saros 139)

May 3, 2125
(Saros 140)

April 1, 2136
(Saros 141)

March 2, 2147
(Saros 142)

January 30, 2158
(Saros 143)

December 29, 2168
(Saros 144)

November 28, 2179
(Saros 145)

October 29, 2190
(Saros 146)

Inex series

[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

February 21, 1803
(Saros 127)

February 1, 1832
(Saros 128)

January 11, 1861
(Saros 129)

December 22, 1889
(Saros 130)

December 3, 1918
(Saros 131)

November 12, 1947
(Saros 132)

October 23, 1976
(Saros 133)

October 3, 2005
(Saros 134)

September 12, 2034
(Saros 135)

August 24, 2063
(Saros 136)

August 3, 2092
(Saros 137)

July 14, 2121
(Saros 138)

June 25, 2150
(Saros 139)

June 5, 2179
(Saros 140)

Notes

[edit]
  1. ^ "August 3, 2092 Annular Solar Eclipse". timeanddate. Retrieved 24 August 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 24 August 2024.
  3. ^ "Annular Solar Eclipse of 2092 Aug 03". EclipseWise.com. Retrieved 24 August 2024.
  4. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. ^ "NASA - Catalog of Solar Eclipses of Saros 137". eclipse.gsfc.nasa.gov.

References

[edit]