Jump to content

英文维基 | 中文维基 | 日文维基 | 草榴社区

Solar eclipse of June 23, 2047

From Wikipedia, the free encyclopedia
Solar eclipse of June 23, 2047
Map
Type of eclipse
NaturePartial
Gamma1.3766
Magnitude0.3129
Maximum eclipse
Coordinates65°48′N 178°00′W / 65.8°N 178°W / 65.8; -178
Times (UTC)
Greatest eclipse10:52:31
References
Saros118 (70 of 72)
Catalog # (SE5000)9612

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, June 23, 2047,[1] with a magnitude of 0.3129. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

This will be the second of four partial solar eclipses in 2047, with the others occurring on January 26, July 22, and December 16.

The partial solar eclipse will be visible for parts of northern Canada, northern Alaska, northern Greenland, and Northeast Asia.

Images

[edit]


Animated path

Eclipse details

[edit]

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]

June 23, 2047 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2047 June 23 at 09:29:32.0 UTC
Equatorial Conjunction 2047 June 23 at 10:34:45.0 UTC
Ecliptic Conjunction 2047 June 23 at 10:37:04.7 UTC
Greatest Eclipse 2047 June 23 at 10:52:30.6 UTC
Last Penumbral External Contact 2047 June 23 at 12:15:32.3 UTC
June 23, 2047 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.31293
Eclipse Obscuration 0.19776
Gamma 1.37663
Sun Right Ascension 06h08m27.7s
Sun Declination +23°25'10.2"
Sun Semi-Diameter 15'44.2"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 06h09m05.2s
Moon Declination +24°40'56.6"
Moon Semi-Diameter 15'07.9"
Moon Equatorial Horizontal Parallax 0°55'32.1"
ΔT 82.6 s

Eclipse season

[edit]

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of June–July 2047
June 23
Descending node (new moon)
July 7
Ascending node (full moon)
July 22
Descending node (new moon)
Partial solar eclipse
Solar Saros 118
Total lunar eclipse
Lunar Saros 130
Partial solar eclipse
Solar Saros 156
[edit]

Eclipses in 2047

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Solar Saros 118

[edit]

Inex

[edit]

Triad

[edit]

Solar eclipses of 2047–2050

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]

The partial solar eclipses on January 26, 2047 and July 22, 2047 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 2047 to 2050
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
118 June 23, 2047

Partial
1.3766 123 December 16, 2047

Partial
−1.0661
128 June 11, 2048

Annular
0.6468 133 December 5, 2048

Total
−0.3973
138 May 31, 2049

Annular
−0.1187 143 November 25, 2049

Hybrid
0.2943
148 May 20, 2050

Hybrid
−0.8688 153 November 14, 2050

Partial
1.0447

Saros 118

[edit]

This eclipse is a part of Saros series 118, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on May 24, 803 AD. It contains total eclipses from August 19, 947 AD through October 25, 1650; hybrid eclipses on November 4, 1668 and November 15, 1686; and annular eclipses from November 27, 1704 through April 30, 1957. The series ends at member 72 as a partial eclipse on July 15, 2083. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 34 at 6 minutes, 59 seconds on May 16, 1398, and the longest duration of annularity was produced by member 59 at 1 minutes, 58 seconds on February 23, 1849. All eclipses in this series occur at the Moon’s descending node of orbit.[4]

Metonic series

[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between June 23, 2047 and November 16, 2134
June 22–23 April 10–11 January 27–29 November 15–16 September 3–5
118 120 122 124 126

June 23, 2047

April 11, 2051

January 27, 2055

November 16, 2058

September 3, 2062
128 130 132 134 136

June 22, 2066

April 11, 2070

January 27, 2074

November 15, 2077

September 3, 2081
138 140 142 144 146

June 22, 2085

April 10, 2089

January 27, 2093

November 15, 2096

September 4, 2100
148 150 152 154 156

June 22, 2104

April 11, 2108

January 29, 2112

November 16, 2115

September 5, 2119
158 160 162 164

June 23, 2123

November 16, 2134

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 2036 and 2200

July 23, 2036
(Saros 117)

June 23, 2047
(Saros 118)

May 22, 2058
(Saros 119)

April 21, 2069
(Saros 120)

March 21, 2080
(Saros 121)

February 18, 2091
(Saros 122)

January 19, 2102
(Saros 123)

December 19, 2112
(Saros 124)

November 18, 2123
(Saros 125)

October 17, 2134
(Saros 126)

September 16, 2145
(Saros 127)

August 16, 2156
(Saros 128)

July 16, 2167
(Saros 129)

June 16, 2178
(Saros 130)

May 15, 2189
(Saros 131)

April 14, 2200
(Saros 132)

Inex series

[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1844 and 2200

November 10, 1844
(Saros 111)

September 12, 1931
(Saros 114)

July 13, 2018
(Saros 117)

June 23, 2047
(Saros 118)

June 1, 2076
(Saros 119)

May 14, 2105
(Saros 120)

April 24, 2134
(Saros 121)

April 3, 2163
(Saros 122)

March 13, 2192
(Saros 123)

References

[edit]
  1. ^ "June 23, 2047 Partial Solar Eclipse". timeanddate. Retrieved 15 August 2024.
  2. ^ "Partial Solar Eclipse of 2047 Jun 23". EclipseWise.com. Retrieved 15 August 2024.
  3. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. ^ "NASA - Catalog of Solar Eclipses of Saros 118". eclipse.gsfc.nasa.gov.
[edit]